

AoPS Community

2015 China National Olympiad

China National Olympiad 2015

www.artofproblemsolving.com/community/c5238 by fattypiggy123, TelvCohl

Day 1

Let $z_1, z_2,, z_n$ be complex numbers satisfying $ z_i - 1 \le r$ for some r in $(0, 1)$. Show that
$\left \sum_{i=1}^{n} z_{i}\right \cdot \left \sum_{i=1}^{n} \frac{1}{z_{i}}\right \ge n^{2}(1-r^{2}).$
Let A, B, D, E, F, C be six points lie on a circle (in order) satisfy $AB = AC$. Let $P = AD \cap BE, R = AF \cap CE, Q = BF \cap CD, S = AD \cap BF, T = AF \cap CD$.
Let K be a point lie on ST satisfy $\angle QKS = \angle ECA$.
Prove that $\frac{SK}{KT} = \frac{PQ}{QR}$
Let $n \ge 5$ be a positive integer and let A and B be sets of integers satisfying the following conditions:
i) $ A = n$, $ B = m$ and A is a subset of B ii) For any distinct $x, y \in B$, $x + y \in B$ iff $x, y \in A$
Determine the minimum value of m .
Determine all integers k such that there exists infinitely many positive integers n not satisfying
$n+k \binom{2n}{n}$

- **2** Given 30 students such that each student has at most 5 friends and for every 5 students there is a pair of students that are not friends, determine the maximum k such that for all such possible configurations, there exists k students who are all not friends.
- **3** Let a_1, a_2, \dots be a sequence of non-negative integers such that for any m, n

$$\sum_{i=1}^{2m} a_{in} \le m.$$

AoPS Community

2015 China National Olympiad

Show that there exist k, d such that

$$\sum_{i=1}^{2k} a_{id} = k - 2014.$$

Act of Problem Solving is an ACS WASC Accredited School.