AoPS Community

China National Olympiad 2015
www.artofproblemsolving.com/community/c5238
by fattypiggy123, TelvCohl

Day 1

1 Let $z_{1}, z_{2}, \ldots, z_{n}$ be complex numbers satisfying $\left|z_{i}-1\right| \leq r$ for some r in $(0,1)$. Show that

$$
\left|\sum_{i=1}^{n} z_{i}\right| \cdot\left|\sum_{i=1}^{n} \frac{1}{z_{i}}\right| \geq n^{2}\left(1-r^{2}\right)
$$

2 Let A, B, D, E, F, C be six points lie on a circle (in order) satisfy $A B=A C$.
Let $P=A D \cap B E, R=A F \cap C E, Q=B F \cap C D, S=A D \cap B F, T=A F \cap C D$.
Let K be a point lie on $S T$ satisfy $\angle Q K S=\angle E C A$.
Prove that $\frac{S K}{K T}=\frac{P Q}{Q R}$
$3 \quad$ Let $n \geq 5$ be a positive integer and let A and B be sets of integers satisfying the following conditions:
i) $|A|=n,|B|=m$ and A is a subset of B
ii) For any distinct $x, y \in B, x+y \in B$ iff $x, y \in A$

Determine the minimum value of m.

Day 2

1 Determine all integers k such that there exists infinitely many positive integers n not satisfying

$$
n+k \left\lvert\,\binom{ 2 n}{n}\right.
$$

2 Given 30 students such that each student has at most 5 friends and for every 5 students there is a pair of students that are not friends, determine the maximum k such that for all such possible configurations, there exists k students who are all not friends.

3 Let a_{1}, a_{2}, \ldots be a sequence of non-negative integers such that for any m, n

$$
\sum_{i=1}^{2 m} a_{i n} \leq m
$$

Show that there exist k, d such that

$$
\sum_{i=1}^{2 k} a_{i d}=k-2014
$$

