AoPS Community

South East Mathematical Olympiad 2005

www.artofproblemsolving.com/community/c5244
by zhaoli, warut_suk, trainer14, seshadri, dblues, yetti, Sjoerd, enescu

Day 1 July 10th
$1 \quad$ Let $a \in \mathbb{R}$ be a parameter.
(1) Prove that the curves of $y=x^{2}+(a+2) x-2 a+1$ pass through a fixed point; also, the vertices of these parabolas all lie on the curve of a certain parabola.
(2) If the function $x^{2}+(a+2) x-2 a+1=0$ has two distinct real roots, find the value range of the larger root.

2 Circle C (with center O) does not have common point with line l. Draw $O P$ perpendicular to l, $P \in l$. Let Q be a point on l (Q is different from P), $Q A$ and $Q B$ are tangent to circle C, and intersect the circle at A and B respectively. $A B$ intersects $O P$ at $K . P M, P N$ are perpendicular to $Q B, Q A$, respectively, $M \in Q B, N \in Q A$. Prove that segment $K P$ is bisected by line $M N$.

3 Let n be positive integer, set $M=\{1,2, \ldots, 2 n\}$. Find the minimum positive integer k such that for any subset A (with k elements) of set M, there exist four pairwise distinct elements in A whose sum is $4 n+1$.

4 Find all positive integer solutions (a, b, c) to the function $a^{2}+b^{2}+c^{2}=2005$, where $a \leq b \leq c$.

Day 2 July 11th

$5 \quad$ Line l tangents unit circle S in point P. Point A and circle S are on the same side of l, and the distance from A to l is $h(h>2)$. Two tangents of circle S are drawn from A, and intersect line l at points B and C respectively.

Find the value of $P B \cdot P C$.
6 Let $P(A)$ be the arithmetic-means of all elements of set $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, namely $P(A)=$ $\frac{1}{n} \sum_{i=1}^{n} a_{i}$. We denote B "balanced subset" of A, if B is a non-empty subset of A and $P(B)=$ $P(A)$. Let set $M=\{1,2,3,4,5,6,7,8,9\}$.

Find the number of all "balanced subset" of M.
7 (1) Find the possible number of roots for the equation $|x+1|+|x+2|+|x+3|=a$, where $x \in R$ and a is parameter.
(2) Let $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be an arithmetic progression, $n \in \mathbb{N}$, and satisfy the condition

$$
\sum_{i=1}^{n}\left|a_{i}\right|=\sum_{i=1}^{n}\left|a_{i}+1\right|=\sum_{i=1}^{n}\left|a_{i}-2\right|=507 .
$$

Find the maximum value of n.
8 Let $0<\alpha, \beta, \gamma<\frac{\pi}{2}$ and $\sin ^{3} \alpha+\sin ^{3} \beta+\sin ^{3} \gamma=1$. Prove that

$$
\tan ^{2} \alpha+\tan ^{2} \beta+\tan ^{2} \gamma \geq \frac{3 \sqrt{3}}{2}
$$

