AoPS Community

South East Mathematical Olympiad 2006

www.artofproblemsolving.com/community/c5245
by jred

Day 1

1 Suppose $a>b>0, f(x)=\frac{2(a+b) x+2 a b}{4 x+a+b}$. Show that there exists an unique positive number x, such that $f(x)=\left(\frac{a^{\frac{1}{3}}+b^{\frac{1}{3}}}{2}\right)^{3}$.

2 In $\triangle A B C, \angle A B C=90^{\circ}$. Points D, G lie on side $A C$. Points E, F lie on segment $B D$, such that $A E \perp B D$ and $G F \perp B D$. Show that if $B E=E F$, then $\angle A B G=\angle D F C$.

3 There is a standard deck of 52 cards without jokers. The deck consists of four suits(diamond, club, heart, spade) which include thirteen cards in each. For each suit, all thirteen cards are ranked from 2 to A (i.e. $2,3, \ldots, Q, K, A$). A pair of cards is called a straight flush if these two cards belong to the same suit and their ranks are adjacent. Additionally, " A " and " 2 " are considered to be adjacent (i.e. " A " is also considered as " 1 "). For example, spade A and spade 2 form a straight flush; diamond 10 and diamond Q are not a straight flush pair. Determine how many ways of picking thirteen cards out of the deck such that all ranks are included but no straight flush exists in them.

4 Given any positive integer n, let a_{n} be the real root of equation $x^{3}+\frac{x}{n}=1$. Prove that
(1) $a_{n+1}>a_{n}$;
(2) $\sum_{i=1}^{n} \frac{1}{(i+1)^{2} a_{i}}<a_{n}$.

Day 2

1 [size=130]In $\triangle A B C, \angle A=60^{\circ} . \odot I$ is the incircle of $\triangle A B C . \odot I$ is tangent to sides $A B, A C$ at D, E, respectively. Line $D E$ intersects line $B I$ and $C I$ at F, G respectively. Prove that [/size] $F G=$ $\frac{B C}{2}$.

2 Find the minimum value of real number m, such that inequality

$$
m\left(a^{3}+b^{3}+c^{3}\right) \geq 6\left(a^{2}+b^{2}+c^{2}\right)+1
$$

holds for all positive real numbers a, b, c where $a+b+c=1$.
3 (1) Find the number of positive integer solutions (m, n, r) of the indeterminate equation $m n+$ $n r+m r=2(m+n+r)$.
(2) Given an integer $k(k>1)$, prove that indeterminate equation $m n+n r+m r=k(m+n+r)$ has at least $3 k+1$ positive integer solutions (m, n, r).

4 Given a circle with its perimeter equal to $n\left(n \in N^{*}\right)$, the least positive integer P_{n} which satisfies the following condition is called the number of the partitioned circle: there are P_{n} points $\left(A_{1}, A_{2}, \ldots, A_{P_{n}}\right)$ on the circle; For any integer $m(1 \leq m \leq n-1)$, there always exist two points $A_{i}, A_{j}\left(1 \leq i, j \leq P_{n}\right)$, such that the length of arc $A_{i} A_{j}$ is equal to m. Furthermore, all arcs between every two adjacent points $A_{i}, A_{i+1}\left(1 \leq i \leq P_{n}, A_{p_{n}+1}=A_{1}\right)$ form a sequence $T_{n}=\left(a_{1}, a_{2},,, a_{p_{n}}\right)$ called the sequence of the partitioned circle. For example when $n=13$, the number of the partitioned circle $P_{13}=4$, the sequence of the partitioned circle $T_{13}=(1,3,2,7)$ or $(1,2,6,4)$. Determine the values of P_{21} and P_{31}, and find a possible solution of T_{21} and T_{31} respectively.

