AoPS Community

South East Mathematical Olympiad 2007

www.artofproblemsolving.com/community/c5246
by jred

Day 1

1 Determine the number of real number a, such that for every a, equation $x^{3}=a x+a+1$ has a root x_{0} satisfying following conditions:
(a) x_{0} is an even integer;
(b) $\left|x_{0}\right|<1000$.
$2 A B$ is the diameter of semicircle $O . C, D$ are two arbitrary points on semicircle O. Point P lies on line $C D$ such that line $P B$ is tangent to semicircle O at B. Line $P O$ intersects line $C A, A D$ at point E, F respectively. Prove that $O E=O F$.

3 Let $a_{i}=\min \left\{\left.k+\frac{i}{k} \right\rvert\, k \in N^{*}\right\}$, determine the value of $S_{n^{2}}=\left[a_{1}\right]+\left[a_{2}\right]+\cdots+\left[a_{n^{2}}\right]$, where $n \geq 2$. ($[x]$ denotes the greatest integer not exceeding x)
$4 \quad$ A sequence of positive integers with n terms satisfies $\sum_{i=1}^{n} a_{i}=2007$. Find the least positive integer n such that there exist some consecutive terms in the sequence with their sum equal to 30 .

Day 2

1 Let $f(x)$ be a function satisfying $f(x+1)-f(x)=2 x+1(x \in \mathbb{R})$.In addition, $|f(x)| \leq 1$ holds for $x \in[0,1]$. Prove that $|f(x)| \leq 2+x^{2}$ holds for $x \in \mathbb{R}$.

2 In right-angle triangle $A B C, \angle C=90$, Point D is the midpoint of side $A B$. Points M and C lie on the same side of $A B$ such that $M B \perp A B$, line $M D$ intersects side $A C$ at N, line $M C$ intersects side $A B$ at E. Show that $\angle D B N=\angle B C E$.

3 Find all triples (a, b, c) satisfying the following conditions:
(i) a, b, c are prime numbers, where $a<b<c<100$.
(ii) $a+1, b+1, c+1$ form a geometric sequence.

4 Let a, b, c be positive real numbers satisfying $a b c=1$. Prove that inequality $\frac{a^{k}}{a+b}+\frac{b^{k}}{b+c}+$ $\frac{c^{k}}{c+a} \geq \frac{3}{2}$ holds for all integer $k(k \geq 2)$.

