

AoPS Community

2007 South East Mathematical Olympiad

South East Mathematical Olympiad 2007

www.artofproblemsolving.com/community/c5246 by jred

Determine the number of real number a , such that for every a , equation $x^3 = ax + a + 1$ has a root x_0 satisfying following conditions: (a) x_0 is an even integer; (b) $ x_0 < 1000$.
AB is the diameter of semicircle O . C , D are two arbitrary points on semicircle O . Point P lies on line CD such that line PB is tangent to semicircle O at B . Line PO intersects line CA , AD at point E , F respectively. Prove that $OE=OF$.
Let $a_i = min\{k + \frac{i}{k} k \in N^*\}$, determine the value of $S_{n^2} = [a_1] + [a_2] + \dots + [a_{n^2}]$, where $n \ge 2$. ([x] denotes the greatest integer not exceeding x)
A sequence of positive integers with <i>n</i> terms satisfies $\sum_{i=1}^{n} a_i = 2007$. Find the least positive integer <i>n</i> such that there exist some consecutive terms in the sequence with their sum equal to 30.
2
Let $f(x)$ be a function satisfying $f(x+1) - f(x) = 2x + 1(x \in \mathbb{R})$. In addition, $ f(x) \le 1$ holds for $x \in [0, 1]$. Prove that $ f(x) \le 2 + x^2$ holds for $x \in \mathbb{R}$.
In right-angle triangle ABC , $\angle C = 90$, Point D is the midpoint of side AB . Points M and C lie on the same side of AB such that $MB \perp AB$, line MD intersects side AC at N , line MC intersects side AB at E . Show that $\angle DBN = \angle BCE$.
Find all triples (a, b, c) satisfying the following conditions: (i) a, b, c are prime numbers, where $a < b < c < 100$. (ii) $a + 1, b + 1, c + 1$ form a geometric sequence.
Let a,b,c be positive real numbers satisfying $abc = 1$. Prove that inequality $\frac{a^k}{a+b} + \frac{b^k}{b+c} + \frac{c^k}{c+a} \ge \frac{3}{2}$ holds for all integer k ($k \ge 2$).

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.