

AoPS Community

2008 South East Mathematical Olympiad

South East Mathematical Olympiad 2008

www.artofproblemsolving.com/community/c5247 by jred

Day 1

1	Given a set $S = \{1, 2, 3,, 3n\}, (n \in N^*)$, let T be a subset of S , such that for any $x, y, z \in T$ (not necessarily distinct) we have $x + y + z \notin T$. Find the maximum number of elements T can have.
2	Let $\{a_n\}$ be a sequence satisfying: $a_1 = 1$ and $a_{n+1} = 2a_n + n \cdot (1 + 2^n), (n = 1, 2, 3, \cdots)$. Determine the general term formula of $\{a_n\}$.
3	In $\triangle ABC$, side $BC > AB$. Point D lies on side AC such that $\angle ABD = \angle CBD$. Points Q, P lie on line BD such that $AQ \perp BD$ and $CP \perp BD$. M, E are the midpoints of side AC and BC respectively. Circle O is the circumcircle of $\triangle PQM$ intersecting side AC at H . Prove that O, H, E, M lie on a circle.
4	Let m, n be positive integers $(m, n \ge 2)$. Given an n -element set A of integers $(A = \{a_1, a_2, \cdots, a_n\}$ for each pair of elements $a_i, a_j (j \ge i)$, we make a difference by $a_j - a_i$. All these C_n^2 differences form an ascending sequence called derived sequence of set A . Let \overline{A} denote the derived sequence of set A . Let $\overline{A}(m)$ denote the number of terms divisible by m in \overline{A} . Prove that $\overline{A}(m) \ge \overline{B}(m)$ where $A = \{a_1, a_2, \cdots, a_n\}$ and $B = \{1, 2, \cdots, n\}$.
Day 2	
1	Let λ be a positive real number. Inequality $ \lambda xy + yz \leq \frac{\sqrt{5}}{2}$ holds for arbitrary real numbers x, y, z satisfying $x^2 + y^2 + z^2 = 1$. Find the maximal value of λ .
2	Circle <i>I</i> is the incircle of $\triangle ABC$. Circle <i>I</i> is tangent to sides <i>BC</i> and <i>AC</i> at <i>M</i> , <i>N</i> respectively. <i>E</i> , <i>F</i> are midpoints of sides <i>AB</i> and <i>AC</i> respectively. Lines <i>EF</i> , <i>BI</i> intersect at <i>D</i> . Show that <i>M</i> , <i>N</i> , <i>D</i> are collinear.
3	Captain Jack and his pirate men plundered six chests of treasure $(A_1, A_2, A_3, A_4, A_5, A_6)$. Every chest A_i contains a_i coins of gold, and all a_i s are pairwise different $(i = 1, 2, \dots, 6)$. They place all chests according to a layout (see the attachment) and start to alternately take out one chest a time between the captain and a pirate who serves as the delegate of the captains men. A rule must be complied with during the game: only those chests that are not adjacent to other

AoPS Community

2008 South East Mathematical Olympiad

take chest firstly, is there a certain strategy for him to secure his victory?

Let *n* be a positive integer. *f*(*n*) denotes the number of *n*-digit numbers a₁a₂...a_n(wave numbers) satisfying the following conditions :
(i) for each a_i ∈ {1, 2, 3, 4}, a_i ≠ a_{i+1}, i = 1, 2, ...;
(ii) for n ≥ 3, (a_i - a_{i+1})(a_{i+1} - a_{i+2}) is negative, i = 1, 2,
(1) Find the value of *f*(10);
(2) Determine the remainder of *f*(2008) upon division by 13.

Art of Problem Solving is an ACS WASC Accredited School.