AoPS Community

South East Mathematical Olympiad 2009

www.artofproblemsolving.com/community/c5248
by Issl

1 Find all pairs (x, y) of integers such that $x^{2}-2 x y+126 y^{2}=2009$.
2 In the convex pentagon $A B C D E$ we know that $A B=D E, B C=E A$ but $A B \neq E A . B, C, D, E$ are concyclic.
Prove that A, B, C, D are concyclic if and only if $A C=A D$.
3 Let x, y, z be positive reals such that $\sqrt{a}=x(y-z)^{2}, \sqrt{b}=y(z-x)^{2}$ and $\sqrt{c}=z(x-y)^{2}$. Prove that

$$
a^{2}+b^{2}+c^{2} \geq 2(a b+b c+c a)
$$

4 Given 12 red points on a circle, find the mininum value of n such that there exists n triangles whose vertex are the red points .
Satisfies: every chord whose points are the red points is the edge of one of the n triangles .
5 Let $X=\left(x_{1}, x_{2}, \ldots \ldots, x_{9}\right)$ be a permutation of the set $\{1,2, \ldots, 9\}$ and let A be the set of all such X.
For any $X \in A$, denote $f(X)=x_{1}+2 x_{2}+\cdots+9 x_{9}$ and $M=\{f(X) \mid X \in A\}$. Find $|M| .(|S|$ denotes number of members of the set S.)

6 Let $\odot O, \odot I$ be the circumcircle and inscribed circles of triangle $A B C$. Prove that : From every point D on $\odot O$, we can construct a triangle $D E F$ such that $A B C$ and $D E F$ have the same circumcircle and inscribed circles

7 Let $x, y, z \geq 0$ be real numbers such that $x+y+z=1$ Define $f(x, y, z)$ in this way:

$$
f(x, y, z)=\frac{x(2 y-z)}{1+x+3 y}+\frac{y(2 z-x)}{1+y+3 z}+\frac{z(2 x-y)}{1+z+3 x}
$$

Find the minimum value and maximum value of $f(x, y, z)$.
8 In an 88 squares chart, we dig out n squares, then we cannot cut a " T "shaped-5-squares out of the surplus chart .
Then find the mininum value of n.

