Art of Problem Solving

AoPS Community

South East Mathematical Olympiad 2010

www.artofproblemsolving.com/community/c5249
by longlong123

Day 1

1 Let $a, b, c \in\{0,1,2, \cdots, 9\}$. The quadratic equation $a x^{2}+b x+c=0$ has a rational root. Prove that the three-digit number $a b c$ is not a prime number.

2 For any set $A=\left\{a_{1}, a_{2}, \cdots, a_{m}\right\}$, let $P(A)=a_{1} a_{2} \cdots a_{m}$. Let $n=\binom{2010}{99}$, and let $A_{1}, A_{2}, \cdots, A_{n}$ be all 99 -element subsets of $\{1,2, \cdots, 2010\}$. Prove that $2010 \mid \sum_{i=1}^{n} P\left(A_{i}\right)$.

3 The incircle of triangle $A B C$ touches $B C$ at D and $A B$ at F, intersects the line $A D$ again at H and the line $C F$ again at K. Prove that $\frac{F D \times H K}{F H \times D K}=3$

4 Let a and b be positive integers such that $1 \leq a<b \leq 100$. If there exists a positive integer k such that $a b \mid a^{k}+b^{k}$, we say that the pair (a, b) is good. Determine the number of good pairs.

Day 2

$1 \quad A B C$ is a triangle with a right angle at $C . M_{1}$ and M_{2} are two arbitrary points inside $A B C$, and M is the midpoint of $M_{1} M_{2}$. The extensions of $B M_{1}, B M$ and $B M_{2}$ intersect $A C$ at N_{1}, N and N_{2} respectively.
Prove that $\frac{M_{1} N_{1}}{B M_{1}}+\frac{M_{2} N_{2}}{B M_{2}} \geq 2 \frac{M N}{B M}$
2 Let \mathbb{N}^{*} be the set of positive integers. Define $a_{1}=2$, and for $n=1,2, \ldots$,

$$
a_{n+1}=\min \left\{\lambda \left\lvert\, \frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots \frac{1}{a_{n}}+\frac{1}{\lambda}<1\right., \lambda \in \mathbb{N}^{*}\right\}
$$

Prove that $a_{n+1}=a_{n}^{2}-a_{n}+1$ for $n=1,2, \ldots$.
3 Let n be a positive integer. The real numbers $a_{1}, a_{2}, \cdots, a_{n}$ and $r_{1}, r_{2}, \cdots, r_{n}$ are such that $a_{1} \leq a_{2} \leq \cdots \leq a_{n}$ and $0 \leq r_{1} \leq r_{2} \leq \cdots \leq r_{n}$.
Prove that $\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} \min \left(r_{i}, r_{j}\right) \geq 0$
$4 A_{1}, A_{2}, \cdots, A_{8}$ are fixed points on a circle. Determine the smallest positive integer n such that among any n triangles with these eight points as vertices, two of them will have a common side.

