

AoPS Community

2010 South East Mathematical Olympiad

South East Mathematical Olympiad 2010

www.artofproblemsolving.com/community/c5249 by longlong123

Day 1	
1	Let $a, b, c \in \{0, 1, 2, \dots, 9\}$. The quadratic equation $ax^2 + bx + c = 0$ has a rational root. Prove that the three-digit number abc is not a prime number.
2	For any set $A = \{a_1, a_2, \dots, a_m\}$, let $P(A) = a_1 a_2 \dots a_m$. Let $n = \binom{2010}{99}$, and let A_1, A_2, \dots, A_n be all 99-element subsets of $\{1, 2, \dots, 2010\}$. Prove that $2010 \sum_{i=1}^n P(A_i)$.
3	The incircle of triangle <i>ABC</i> touches <i>BC</i> at <i>D</i> and <i>AB</i> at <i>F</i> , intersects the line <i>AD</i> again at <i>H</i> and the line <i>CF</i> again at <i>K</i> . Prove that $\frac{FD \times HK}{FH \times DK} = 3$
4	Let <i>a</i> and <i>b</i> be positive integers such that $1 \le a < b \le 100$. If there exists a positive integer <i>k</i> such that $ab a^k + b^k$, we say that the pair (a, b) is good. Determine the number of good pairs.
Day 2	
1	ABC is a triangle with a right angle at C . M_1 and M_2 are two arbitrary points inside ABC , and M is the midpoint of M_1M_2 . The extensions of BM_1 , BM and BM_2 intersect AC at N_1 , N and N_2 respectively. Prove that $\frac{M_1N_1}{BM_1} + \frac{M_2N_2}{BM_2} \ge 2\frac{MN}{BM}$
2	Let \mathbb{N}^* be the set of positive integers. Define $a_1 = 2$, and for $n = 1, 2,,$
	$a_{n+1} = \min\{\lambda \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} + \frac{1}{\lambda} < 1, \lambda \in \mathbb{N}^*\}$
	Prove that $a_{n+1} = a_n^2 - a_n + 1$ for $n = 1, 2,$
3	Let <i>n</i> be a positive integer. The real numbers a_1, a_2, \dots, a_n and r_1, r_2, \dots, r_n are such that $a_1 \leq a_2 \leq \dots \leq a_n$ and $0 \leq r_1 \leq r_2 \leq \dots \leq r_n$. Prove that $\sum_{i=1}^n \sum_{j=1}^n a_i a_j \min(r_i, r_j) \geq 0$
4	A_1, A_2, \cdots, A_8 are fixed points on a circle. Determine the smallest positive integer n such that among any n triangles with these eight points as vertices, two of them will have a common side.