

AoPS Community

2011 South East Mathematical Olympiad

South East Mathematical Olympiad 2011

www.artofproblemsolving.com/community/c5250 by Issl, Fersolve

Day 1

1	If $\min\left\{\frac{ax^2+b}{\sqrt{x^2+1}} \mid x \in \mathbb{R}\right\} = 3$, then (1) Find the range of <i>b</i> ; (2) for every given <i>b</i> , find <i>a</i> .
2	If positive integers, a, b, c are pair-wise co-prime, and,
	$a^2 (b^3+c^3),b^2 (a^3+c^3),c^2 (a^3+b^3)$
	find a, b , and c
3	Find all positive integer n , such that for all 35-element-subsets of $M = (1, 2, 3,, 50)$, there exists at least two different elements a, b , satisfing : $a - b = n$ or $a + b = n$.
4	Let <i>O</i> be the circumcenter of triangle <i>ABC</i> , a line passes through <i>O</i> intersects sides <i>AB</i> , <i>AC</i> at points <i>M</i> , <i>N</i> , <i>E</i> is the midpoint of <i>MC</i> , <i>F</i> is the midpoint of <i>NB</i> , prove that : $\angle FOE = \angle BAC$
Day 2	2
1	In triangle ABC , AA_0 , BB_0 , CC_0 are the angle bisectors, A_0 , B_0 , C_0 are on sides BC , CA , AB , draw $A_0A_1//BB_0$, $A_0A_2//CC_0$, A_1 lies on AC , A_2 lies on AB , A_1A_2 intersects BC at A_3 . B_3 , C_3 are constructed similarly. Prove that : A_3 , B_3 , C_3 are collinear.
2	Let $P_i \ i = 1, 2, \dots, n$ be n points on the plane, M is a point on segment AB in the same plane, prove : $\sum_{i=1}^{n} P_iM \le \max(\sum_{i=1}^{n} P_iA , \sum_{i=1}^{n} P_iB)$. (Here $ AB $ means the length of segment AB).
3	The sequence $(a_n)_{n>=1}$ satisfies that : $a_1 = a_2 = 1$ $a_n = 7a_{n-1} - a_{n-2}$ ($n \ge 3$), prove that : for all positive integer n, number $a_n + 2 + a_{n+1}$ is a perfect square.
4	12 points are located on a clock with the sme distance , numbers $1, 2, 3,12$ are marked on each point in clockwise order . Use 4 kinds of colors (red,yellow,blue,green) to colour the the points , each kind of color has 3 points . N ow , use these 12 points as the vertex of convex quadrilateral to construct n convex quadrilaterals . They satisfies the following conditions: (1). the colours of vertex of every convex quadrilateral are different from each other . (2). for every 3 quadrilaterals among them , there exists a colour such that : the numbers on the 3 points painted into this colour are different from each other . Find the maximum n .

AoPS Community

2011 South East Mathematical Olympiad

Act of Problem Solving is an ACS WASC Accredited School.