Art of Problem Solving

AoPS Community

2011 South East Mathematical Olympiad

South East Mathematical Olympiad 2011

www.artofproblemsolving.com/community/c5250
by Issl, Fersolve

Day 1

1 If $\min \left\{\left.\frac{a x^{2}+b}{\sqrt{x^{2}+1}} \right\rvert\, x \in \mathbb{R}\right\}=3$, then (1) Find the range of b; (2) for every given b, find a.
2 If positive integers, a, b, c are pair-wise co-prime, and,

$$
a^{2}\left|\left(b^{3}+c^{3}\right), b^{2}\right|\left(a^{3}+c^{3}\right), c^{2} \mid\left(a^{3}+b^{3}\right)
$$

find a, b, and c
3 Find all positive integer n, such that for all 35-element-subsets of $M=(1,2,3, \ldots, 50)$, there exists at least two different elements a, b, satisfing : $a-b=n$ or $a+b=n$.

4 Let O be the circumcenter of triangle $A B C$, a line passes through O intersects sides $A B, A C$ at points M, N, E is the midpoint of $M C, F$ is the midpoint of $N B$, prove that : $\angle F O E=\angle B A C$

Day 2

1 In triangle $A B C, A A_{0}, B B_{0}, C C_{0}$ are the angle bisectors, A_{0}, B_{0}, C_{0} are on sides $B C, C A, A B$, draw $A_{0} A_{1} / / B B_{0}, A_{0} A_{2} / / C C_{0}, A_{1}$ lies on $A C, A_{2}$ lies on $A B, A_{1} A_{2}$ intersects $B C$ at $A_{3} . B_{3}, C_{3}$ are constructed similarly.Prove that : A_{3}, B_{3}, C_{3} are collinear.

2 Let $P_{i} i=1,2, \ldots \ldots . n$ be n points on the plane, M is a point on segment $A B$ in the same plane , prove : $\sum_{i=1}^{n}\left|P_{i} M\right| \leq \max \left(\sum_{i=1}^{n}\left|P_{i} A\right|, \sum_{i=1}^{n}\left|P_{i} B\right|\right)$. (Here $|A B|$ means the length of segment $A B)$.

3 The sequence $\left(a_{n}\right)_{n>=1}$ satisfies that : $a_{1}=a_{2}=1 a_{n}=7 a_{n-1}-a_{n-2}(n>=3)$, prove that: for all positive integer n , number $a_{n}+2+a_{n+1}$ is a perfect square .

412 points are located on a clock with the sme distance, numbers $1,2,3, \ldots 12$ are marked on each point in clockwise order. Use 4 kinds of colors (red,yellow,blue,green) to colour the the points, each kind of color has 3 points. N ow, use these 12 points as the vertex of convex quadrilateral to construct n convex quadrilaterals. They satisfies the following conditions:
(1). the colours of vertex of every convex quadrilateral are different from each other .
(2). for every 3 quadrilaterals among them, there exists a colour such that : the numbers on the 3 points painted into this colour are different from each other .
Find the maximum n.

