Art of Problem Solving

AoPS Community

South East Mathematical Olympiad 2012

www.artofproblemsolving.com/community/c5251
by jred

Day 1

1 Find a triple (l, m, n) of positive integers $(1<l<m<n)$, such that $\sum_{k=1}^{l} k, \sum_{k=l+1}^{m} k, \sum_{k=m+1}^{n} k$ form a geometric sequence in order.

2 The incircle I of $\triangle A B C$ is tangent to sides $A B, B C, C A$ at D, E, F respectively. Line $E F$ intersects lines $A I, B I, D I$ at M, N, K respectively. Prove that $D M \cdot K E=D N \cdot K F$.

3 For composite number n, let $f(n)$ denote the sum of the least three divisors of n, and $g(n)$ the sum of the greatest two divisors of n. Find all composite numbers n, such that $g(n)=(f(n))^{m}$ ($m \in N^{*}$).

4 Let a, b, c, d be real numbers satisfying inequality $a \cos x+b \cos 2 x+c \cos 3 x+d \cos 4 x \leq 1$ holds for arbitrary real number x. Find the maximal value of $a+b-c+d$ and determine the values of a, b, c, d when that maximum is attained.

Day 2

1 A nonnegative integer m is called a six-composited number if m and the sum of its digits are both multiples of 6 . How many six-composited numbers that are less than 2012 are there?

2 Find the least natural number n, such that the following inequality holds: $\sqrt{\frac{n-2011}{2012}}-\sqrt{\frac{n-2012}{2011}}<$ $\sqrt[3]{\frac{n-2013}{2011}}-\sqrt[3]{\frac{n-2011}{2013}}$.

3 In $\triangle A B C$, point D lies on side $A C$ such that $\angle A B D=\angle C$. Point E lies on side $A B$ such that $B E=D E . M$ is the midpoint of segment $C D$. Point H is the foot of the perpendicular from A to $D E$. Given $A H=2-\sqrt{3}$ and $A B=1$, find the size of $\angle A M E$.

4 Let positive integers m, n satisfy $n=2^{m}-1 . P_{n}=\{1,2, \cdots, n\}$ is a set that contains n points on an axis. A grasshopper on the axis can leap from one point to another adjacent point. Find the maximal value of m satisfying following conditions:
(a) x, y are two arbitrary points in P_{n};
(b) starting at point x, the grasshopper leaps 2012 times and finishes at point y; (the grasshopper is allowed to travel x and y more than once)
(c) there are even number ways for the grasshopper to do (b).

