

## **AoPS Community**

## 2012 South East Mathematical Olympiad

## South East Mathematical Olympiad 2012

www.artofproblemsolving.com/community/c5251 by jred

| Day 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | Find a triple $(l, m, n)$ of positive integers $(1 < l < m < n)$ , such that $\sum_{k=1}^{l} k$ , $\sum_{k=l+1}^{m} k$ , $\sum_{k=m+1}^{n} k$ form a geometric sequence in order.                                                                                                                                                                                                                                                                                                                                                                                     |
| 2     | The incircle <i>I</i> of $\triangle ABC$ is tangent to sides $AB, BC, CA$ at $D, E, F$ respectively. Line <i>EF</i> intersects lines $AI, BI, DI$ at $M, N, K$ respectively. Prove that $DM \cdot KE = DN \cdot KF$ .                                                                                                                                                                                                                                                                                                                                                 |
| 3     | For composite number <i>n</i> , let $f(n)$ denote the sum of the least three divisors of <i>n</i> , and $g(n)$ the sum of the greatest two divisors of <i>n</i> . Find all composite numbers <i>n</i> , such that $g(n) = (f(n))^m$ $(m \in N^*)$ .                                                                                                                                                                                                                                                                                                                   |
| 4     | Let $a, b, c, d$ be real numbers satisfying inequality $a \cos x + b \cos 2x + c \cos 3x + d \cos 4x \le 1$ holds for arbitrary real number $x$ . Find the maximal value of $a + b - c + d$ and determine the values of $a, b, c, d$ when that maximum is attained.                                                                                                                                                                                                                                                                                                   |
| Day 2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1     | A nonnegative integer $m$ is called a six-composited number if $m$ and the sum of its digits are both multiples of 6. How many six-composited numbers that are less than $2012$ are there?                                                                                                                                                                                                                                                                                                                                                                            |
| 2     | Find the least natural number <i>n</i> , such that the following inequality holds: $\sqrt{\frac{n-2011}{2012}} - \sqrt{\frac{n-2012}{2011}} = \sqrt[3]{\frac{n-2013}{2011}} - \sqrt[3]{\frac{n-2013}{2011}} = \sqrt[3]{\frac{n-2011}{2013}}.$                                                                                                                                                                                                                                                                                                                         |
| 3     | In $\triangle ABC$ , point <i>D</i> lies on side <i>AC</i> such that $\angle ABD = \angle C$ . Point <i>E</i> lies on side <i>AB</i> such that $BE = DE$ . <i>M</i> is the midpoint of segment <i>CD</i> . Point <i>H</i> is the foot of the perpendicular from <i>A</i> to <i>DE</i> . Given $AH = 2 - \sqrt{3}$ and $AB = 1$ , find the size of $\angle AME$ .                                                                                                                                                                                                      |
| 4     | Let positive integers $m, n$ satisfy $n = 2^m - 1$ . $P_n = \{1, 2, \dots, n\}$ is a set that contains $n$ points<br>on an axis. A grasshopper on the axis can leap from one point to another adjacent point. Find<br>the maximal value of $m$ satisfying following conditions:<br>(a) $x, y$ are two arbitrary points in $P_n$ ;<br>(b) starting at point $x$ , the grasshopper leaps 2012 times and finishes at point $y$ ; (the grasshop-<br>per is allowed to travel $x$ and $y$ more than once)<br>(c) there are even number ways for the grasshopper to do (b). |

**AoPS Community** 

2012 South East Mathematical Olympiad

Act of Problem Solving is an ACS WASC Accredited School.