Art of Problem Solving

AoPS Community

2013 South East Mathematical Olympiad

South East Mathematical Olympiad 2013

www.artofproblemsolving.com/community/c5252
by sqing, s372102, jred

Day 1 July 27th
1 Let a, b be real numbers such that the equation $x^{3}-a x^{2}+b x-a=0$ has three positive real roots. Find the minimum of $\frac{2 a^{3}-3 a b+3 a}{b+1}$.
$2 \triangle A B C, A B>A C$. the incircle I of $\triangle A B C$ meet $B C$ at point $D, A D$ meet I again at $E . E P$ is a tangent of I, and $E P$ meet the extension line of $B C$ at $P . C F \| P E, C F \cap A D=F$. the line $B F$ meet I at M, N, point M is on the line segment $B F$, the line segment $P M$ meet I again at Q. Show that $\angle E N P=\angle E N Q$

3 A sequence $\left\{a_{n}\right\}, a_{1}=1, a_{2}=2, a_{n+1}=\frac{a_{n}^{2}+(-1)^{n}}{a_{n-1}}$. Show that $a_{m}^{2}+a_{m+1}^{2} \in\left\{a_{n}\right\}, \forall m \in \mathbb{N}$
4 There are 12 acrobats who are assigned a distinct number ($1,2, \cdots, 12$) respectively. Half of them stand around forming a circle (called circle A); the rest form another circle (called circle B) by standing on the shoulders of every two adjacent acrobats in circle A respectively. Then circle A and circle B make up a formation. We call a formation a tower if the number of any acrobat in circle B is equal to the sum of the numbers of the two acrobats whom he stands on. How many heterogeneous towers are there?
(Note: two towers are homogeneous if either they are symmetrical or one may become the other one by rotation. We present an example of 8 acrobats (see attachment). Numbers inside the circle represent the circle A; numbers outside the circle represent the circle B. All these three formations are towers, however they are homogeneous towers.)

Day 2 July 28th
$5 \quad f(x)=\sum_{i=1}^{2013}\left[\frac{x}{i!}\right]$. A integer n is called good if $f(x)=n$ has real root. How many good numbers are in $\{1,3,5, \ldots, 2013\}$?
$6 \quad n>1$ is an integer. The first n primes are $p_{1}=2, p_{2}=3, \ldots, p_{n}$. Set $A=p_{1}^{p_{1}} p_{2}^{p_{2}} \ldots p_{n}^{p_{n}}$. Find all positive integers x, such that $\frac{A}{x}$ is even, and $\frac{A}{x}$ has exactly x divisors

7 Given a 3×3 grid, we call the remainder of the grid an angle when a 2×2 grid is cut out from the grid. Now we place some angles on a 10×10 grid such that the borders of those angles must lie on the grid lines or its borders, moreover there is no overlap among the angles. Determine
the maximal value of k, such that no matter how we place k angles on the grid, we can always place another angle on the grid.
$8 \quad n \geq 3$ is a integer. $\alpha, \beta, \gamma \in(0,1)$. For every $a_{k}, b_{k}, c_{k} \geq 0(k=1,2, \ldots, n)$ with $\sum_{k=1}^{n}(k+\alpha) a_{k} \leq$ $\alpha, \sum_{k=1}^{n}(k+\beta) b_{k} \leq \beta, \sum_{k=1}^{n}(k+\gamma) c_{k} \leq \gamma$, we always have $\sum_{k=1}^{n}(k+\lambda) a_{k} b_{k} c_{k} \leq \lambda$.
Find the minimum of λ

