AoPS Community

Mediterranean Mathematics Olympiad 1998

www.artofproblemsolving.com/community/c5254
by djb86

1 A square $A B C D$ is inscribed in a circle. If M is a point on the shorter arc $A B$, prove that

$$
M C \cdot M D>3 \sqrt{3} \cdot M A \cdot M B
$$

2 Prove that the polynomial $z^{2 n}+z^{n}+1(n \in \mathbb{N})$ is divisible by the polynomial $z^{2}+z+1$ if and only if n is not a multiple of 3 .

3 In a triangle $A B C, I$ is the incenter and D, E, F are the points of tangency of the incircle with $B C, C A, A B$, respectively. The bisector of angle $B I C$ meets $B C$ at M, and the line $A M$ intersects $E F$ at P. Prove that $D P$ bisects the angle $F D E$.

