AoPS Community

Mediterranean Mathematics Olympiad 1999

www.artofproblemsolving.com/community/c5255
by MinatoF, djb86

1 Do there exist a circle and an infinite set of points on it such that the distance between any two of the points is rational?

2 A plane figure of area $A>n$ is given, where n is a positive integer. Prove that this figure can be placed onto a Cartesian plane so that it covers at least $n+1$ points with integer coordinates.

3 Let $a, b, c \neq 0$ and $x, y, z \in \mathbb{R}^{+}$such that $x+y+z=3$. Prove that

$$
\frac{3}{2} \sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}} \geq \frac{x}{1+a^{2}}+\frac{y}{1+b^{2}}+\frac{z}{1+c^{2}}
$$

4 In triangle $\triangle A B C$ we have $B C=a, C A=b, A B=c$ and $\angle B=4 \angle A$ Show that

$$
a b^{2} c^{3}=\left(b^{2}-a^{2}-a c\right)\left(\left(a^{2}-b^{2}\right)^{2}-a^{2} c^{2}\right)
$$

