www.artofproblemsolving.com/community/c525582
by Malik

1 Let $a_{1}, a_{2}, \ldots, a_{2 n}$ be positive real numbers such that $a_{j} a_{n+j}=1$ for the values $j=1,2, \ldots, n$.
a. Prove that either the average of the numbers $a_{1}, a_{2}, \ldots, a_{n}$ is at least 1 or the average of the numbers $a_{n+1}, a_{n+2}, \ldots, a_{2 n}$ is at least 1 .
b. Assuming that $n \geq 2$, prove that there exist two distinct numbers j, k in the set $\{1,2, \ldots, 2 n\}$ such that

$$
\left|a_{j}-a_{k}\right|<\frac{1}{n-1} .
$$

2 In triangle $A B C$, the bisector of angle B meets the opposite side $A C$ at B^{\prime}. Similarly, the bisector
of angle C meets the opposite side $A B$ at C^{\prime}. Prove that $A=60^{\circ} \mathrm{if}$, and only if, $B C^{\prime}+C B^{\prime}=$ $B C$.

3 There are n people standing on a circular track. We want to perform a number of moves so that we end up with a situation where the distance between every two neighbours is the same. The move that is allowed consists in selecting two people and asking one of them to walk a distance d on the circular track clockwise, and asking the other to walk the same distance on the track anticlockwise. The two people selected and the quantity d can vary from move to move.

Prove that it is possible to reach the desired situation (where the distance between every two neighbours is the same) after at most $n-1$ moves.

4 Let m, n be integers. It is known that there are integers a, b such that $a m+b n=1 \mathrm{if}$, and only if, the greatest common divisor of m, n is 1 . You are not required to prove this.

Now suppose that p, q are different odd primes. In each case determine if there are integers a, b such that $a p+b q=1$ so that the given condition is satisfied:
a. p divides b and q divides a;
b. p divides a and q divides b;
c. p does not divide a and q does not divide b.

