AoPS Community

Mediterranean Mathematics Olympiad 2000

www.artofproblemsolving.com/community/c5256
by nickolas, WakeUp, silouan

1 Let $F=\{1,2, \ldots, 100\}$ and let G be any 10 -element subset of F. Prove that there exist two disjoint nonempty subsets S and T of G with the same sum of elements.

2 Suppose that in the exterior of a convex quadrilateral $A B C D$ equilateral triangles $X A B, Y B C, Z C D, W D$ with centroids $S_{1}, S_{2}, S_{3}, S_{4}$ respectively are constructed. Prove that $S_{1} S_{3} \perp S_{2} S_{4}$ if and only if $A C=B D$.

3 Let $c_{1}, c_{2}, \ldots, c_{n}, b_{1}, b_{2}, \ldots, b_{n}(n \geq 2)$ be positive real numbers. Prove that the equation

$$
\sum_{i=1}^{n} c_{i} \sqrt{x_{i}-b_{i}}=\frac{1}{2} \sum_{i=1}^{n} x_{i}
$$

has a unique solution $\left(x_{1}, \ldots, x_{n}\right)$ if and only if $\sum_{i=1}^{n} c_{i}^{2}=\sum_{i=1}^{n} b_{i}$.
4 Let P, Q, R, S be the midpoints of the sides $B C, C D, D A, A B$ of a convex quadrilateral, respectively. Prove that

$$
4\left(A P^{2}+B Q^{2}+C R^{2}+D S^{2}\right) \leq 5\left(A B^{2}+B C^{2}+C D^{2}+D A^{2}\right)
$$

