AoPS Community

Mediterranean Mathematics Olympiad 2002

www.artofproblemsolving.com/community/c5258
by , Amir Hossein, MJ GEO

1 Find all natural numbers x, y such that $y \mid\left(x^{2}+1\right)$ and $x^{2} \mid\left(y^{3}+1\right)$.
2 Suppose x, y, a are real numbers such that $x+y=x^{3}+y^{3}=x^{5}+y^{5}=a$. Find all possible values of a.

3 In an acute-angled triangle $A B C, M$ and N are points on the sides $A C$ and $B C$ respectively, and K the midpoint of $M N$. The circumcircles of triangles $A C N$ and $B C M$ meet again at a point D. Prove that the line $C D$ contains the circumcenter O of $\triangle A B C$ if and only if K is on the perpendicular bisector of $A B$.

4 If a, b, c are non-negative real numbers with $a^{2}+b^{2}+c^{2}=1$, prove that:

$$
\frac{a}{b^{2}+1}+\frac{b}{c^{2}+1}+\frac{c}{a^{2}+1} \geq \frac{3}{4}(a \sqrt{a}+b \sqrt{b}+c \sqrt{c})^{2}
$$

