AoPS Community

Mediterranean Mathematics Olympiad 2003

www.artofproblemsolving.com/community/c5259
by Amir Hossein, erdugan

1 Prove that the equation $x^{2}+y^{2}+z^{2}=x+y+z+1$ has no rational solutions.
2 In a triangle $A B C$ with $B C=C A+\frac{1}{2} A B$, point P is given on side $A B$ such that $B P: P A=1: 3$. Prove that $\angle C A P=2 \angle C P A$.

3 Let a, b, c be non-negative numbers with $a+b+c=3$. Prove the inequality

$$
\frac{a}{b^{2}+1}+\frac{b}{c^{2}+1}+\frac{c}{a^{2}+1} \geq \frac{3}{2}
$$

4 Consider a system of infinitely many spheres made of metal, with centers at points $(a, b, c) \in$ \mathbb{Z}^{3}. We say that the system is stable if the temperature of each sphere equals the average temperature of the six closest spheres. Assuming that all spheres in a stable system have temperatures between $0^{\circ} \mathrm{C}$ and $1^{\circ} \mathrm{C}$, prove that all the spheres have the same temperature.

