AoPS Community

Mediterranean Mathematics Olympiad 2004

www.artofproblemsolving.com/community/c5260
by Amir Hossein, silouan

1 Find all natural numbers m such that

$$
1!\cdot 3!\cdot 5!\cdots(2 m-1)!=\left(\frac{m(m+1)}{2}\right)!.
$$

2 In a triangle $A B C$, the altitude from A meets the circumcircle again at T. Let O be the circumcenter. The lines $O A$ and $O T$ intersect the side $B C$ at Q and M, respectively. Prove that

$$
\frac{S_{A Q C}}{S_{C M T}}=\left(\frac{\sin B}{\cos C}\right)^{2} .
$$

3 Let $a, b, c>0$ and $a b+b c+c a+2 a b c=1$ then prove that

$$
2(a+b+c)+1 \geq 32 a b c
$$

4 Let z_{1}, z_{2}, z_{3} be pairwise distinct complex numbers satisfying $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|=1$ and

$$
\frac{1}{2+\left|z_{1}+z_{2}\right|}+\frac{1}{2+\left|z_{2}+z_{3}\right|}+\frac{1}{2+\left|z_{3}+z_{1}\right|}=1 .
$$

If the points $A\left(z_{1}\right), B\left(z_{2}\right), C\left(z_{3}\right)$ are vertices of an acute-angled triangle, prove that this triangle is equilateral.

