AoPS Community

Mediterranean Mathematics Olympiad 2005

www.artofproblemsolving.com/community/c5261
by Yimin Ge, bandrak

1 The professor tells Peter the product of two positive integers and Sam their sum. At first, nobody of them knows the number of the other.

One of them says: You can't possibly guess my number.
Then the other says: You are wrong, the number is 136.
Which number did the professor tell them respectively? Give reasons for your claim.
$2 \quad$ Let k and k^{\prime} be concentric circles with center O and radius R and R^{\prime} where $R<R^{\prime}$ holds. A line passing through O intersects k at A and k^{\prime} at B where O is between A and B. Another line passing through O and distict from $A B$ intersects k at E and k^{\prime} at F where E is between O and F.

Prove that the circumcircles of the triangles $O A E$ and $O B F$, the circle with diameter $E F$ and the circle with diameter $A B$ are concurrent.

3 Let $A_{1}, A_{2}, \ldots, A_{n}(n \geq 3)$ be finite sets of positive integers. Prove, that

$$
\frac{1}{n}\left(\sum_{i=1}^{n}\left|A_{i}\right|\right)+\frac{1}{\binom{n}{3}} \sum_{1 \leq i<j<k \leq n}\left|A_{i} \cap A_{j} \cap A_{k}\right| \geq \frac{2}{\binom{n}{2}} \sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right|
$$

holds, where $|E|$ is the cardinality of the set E
4 Let A be the set of all polynomials $f(x)$ of order 3 with integer coefficients and cubic coefficient 1 , so that for every $f(x)$ there exists a prime number p which does not divide 2004 and a number q which is coprime to p and 2004, so that $f(p)=2004$ and $f(q)=0$.
Prove that there exists a infinite subset $B \subset A$, so that the function graphs of the members of B are identical except of translations

