AoPS Community

Mediterranean Mathematics Olympiad 2006

www.artofproblemsolving.com/community/c5262
by WakeUp

1 Every point of a plane is colored red or blue, not all with the same color.
Can this be done in such a way that, on every circumference of radius 1 ,
(a) there is exactly one blue point;
(b) there are exactly two blue points?

2 Let P be a point inside a triangle $A B C$, and $A_{1} B_{2}, B_{1} C_{2}, C_{1} A_{2}$ be segments passing through P and parallel to $A B, B C, C A$ respectively, where points A_{1}, A_{2} lie on $B C, B_{1}, B_{2}$ on $C A$, and C_{1}, C_{2} on $A B$. Prove that

$$
\operatorname{Area}\left(A_{1} A_{2} B_{1} B_{2} C_{1} C_{2}\right) \geq \frac{1}{2} \operatorname{Area}(A B C)
$$

3 The side lengths a, b, c of a triangle $A B C$ are integers with $\operatorname{gcd}(a, b, c)=1$. The bisector of angle $B A C$ meets $B C$ at D.
(a) show that if triangles $D B A$ and $A B C$ are similar then c is a square.
(b) If $c=n^{2}$ is a square $(n \geq 2)$, find a triangle $A B C$ satisfying (a).

4 Let $0 \leq x_{i, j} \leq 1$, where $i=1,2, \ldots m$ and $j=1,2, \ldots n$. Prove the inequality

$$
\prod_{j=1}^{n}\left(1-\prod_{i=1}^{m} x_{i, j}\right)+\prod_{i=1}^{m}\left(1-\prod_{j=1}^{n}\left(1-x_{i, j}\right)\right) \geq 1
$$

