

AoPS Community

2008 Mediterranean Mathematics Olympiad

Mediterranean Mathematics Olympiad 2008

www.artofproblemsolving.com/community/c5264 by bluecarneal

1 Let ABCDEF be a convex hexagon such that all of its vertices are on a circle. Prove that AD, BE and CF are concurrent if and only if $\frac{AB}{BC} \cdot \frac{CD}{DE} \cdot \frac{EF}{FA} = 1$.

2 Determine whether there exist two infinite point sequences A₁, A₂,... and B₁, B₂,... in the plane, such that for all i, j, k with 1 ≤ i < j < k,
(i) B_k is on the line that passes through A_i and A_j if and only if k = i + j.
(ii) A_k is on the line that passes through B_i and B_j if and only if k = i + j.
(*Proposed by Gerhard Woeginger, Austria*)

- **3** Let *n* be a positive integer. Calculate the sum $\sum_{k=1}^{n} \sum_{1 \le i_1 < \ldots < i_k \le n} \frac{2^k}{(i_1+1)(i_2+1)\dots(i_k+1)}$
- 4 The sequence of polynomials (a_n) is defined by $a_0 = 0$, $a_1 = x + 2$ and $a_n = a_{n-1} + 3a_{n-1}a_{n-2} + a_{n-2}$ for n > 1.
 - (a) Show for all positive integers k, m: if k divides m then a_k divides a_m .
 - (b) Find all positive integers n such that the sum of the roots of polynomial a_n is an integer.

AoPS Online AoPS Academy AoPS Academy