AoPS Community

Mediterranean Mathematics Olympiad 2008

www.artofproblemsolving.com/community/c5264
by bluecarneal

1 Let $A B C D E F$ be a convex hexagon such that all of its vertices are on a circle. Prove that $A D$, $B E$ and $C F$ are concurrent if and only if $\frac{A B}{B C} \cdot \frac{C D}{D E} \cdot \frac{E F}{F A}=1$.

2 Determine whether there exist two infinite point sequences A_{1}, A_{2}, \ldots and B_{1}, B_{2}, \ldots in the plane, such that for all i, j, k with $1 \leq i<j<k$,
(i) B_{k} is on the line that passes through A_{i} and A_{j} if and only if $k=i+j$.
(ii) A_{k} is on the line that passes through B_{i} and B_{j} if and only if $k=i+j$.
(Proposed by Gerhard Woeginger, Austria)
3 Let n be a positive integer. Calculate the sum $\sum_{k=1}^{n} \quad \sum_{1 \leq i_{1}<\ldots<i_{k} \leq n} \frac{2^{k}}{\left(i_{1}+1\right)\left(i_{2}+1\right) \ldots\left(i_{k}+1\right)}$
4 The sequence of polynomials $\left(a_{n}\right)$ is defined by $a_{0}=0, a_{1}=x+2$ and $a_{n}=a_{n-1}+3 a_{n-1} a_{n-2}+$ a_{n-2} for $n>1$.
(a) Show for all positive integers k, m : if k divides m then a_{k} divides a_{m}.
(b) Find all positive integers n such that the sum of the roots of polynomial a_{n} is an integer.

