AoPS Community

Mediterranean Mathematics Olympiad 2009

www.artofproblemsolving.com/community/c5265
by bluecarneal

1 Determine all integers $n \geq 1$ for which there exists n real numbers x_{1}, \ldots, x_{n} in the closed interval $[-4,2]$ such that the following three conditions are fulfilled:

- the sum of these real numbers is at least n.
- the sum of their squares is at most $4 n$.
- the sum of their fourth powers is at least $34 n$.
(Proposed by Gerhard Woeginger, Austria)
2 Let $A B C$ be a triangle with $90^{\circ} \neq \angle A \neq 135^{\circ}$. Let D and E be external points to the triangle $A B C$ such that $D A B$ and $E A C$ are isoscele triangles with right angles at D and E. Let $F=$ $B E \cap C D$, and let M and N be the midpoints of $B C$ and $D E$, respectively.

Prove that, if three of the points A, F, M, N are collinear, then all four are collinear.
3 Decide whether the integers $1,2, \ldots, 100$ can be arranged in the cells $C(i, j)$ of a 10×10 matrix (where $1 \leq i, j \leq 10$), such that the following conditions are fullfiled:
i) In every row, the entries add up to the same sum S.
ii) In every column, the entries also add up to this sum S.
iii) For every $k=1,2, \ldots, 10$ the ten entries $C(i, j)$ with $i-j \equiv k \bmod 10$ add up to S.
(Proposed by Gerhard Woeginger, Austria)
4 Let x, y, z be positive real numbers. Prove that

$$
\sum_{\text {cyclic }} \frac{x y}{x y+x^{2}+y^{2}} \leq \sum_{\text {cyclic }} \frac{x}{2 x+z}
$$

(Proposed by efket Arslanagi, Bosnia and Herzegovina)

