AoPS Community

Mediterranean Mathematics Olympiad 2010

www.artofproblemsolving.com/community/c5266
by delegat

1 Real numbers a, b, c, d are given. Solve the system of equations (unknowns x, y, z, u)

$$
\begin{aligned}
& x^{2}-y z-z u-y u=a \\
& y^{2}-z u-u x-x z=b \\
& z^{2}-u x-x y-y u=c \\
& u^{2}-x y-y z-z x=d
\end{aligned}
$$

2 Given the positive real numbers $a_{1}, a_{2}, \ldots, a_{n}$, such that $n>2$ and $a_{1}+a_{2}+\cdots+a_{n}=1$, prove that the inequality

$$
\frac{a_{2} \cdot a_{3} \cdots \cdots a_{n}}{a_{1}+n-2}+\frac{a_{1} \cdot a_{3} \cdots \cdots a_{n}}{a_{2}+n-2}+\cdots+\frac{a_{1} \cdot a_{2} \cdots \cdots a_{n-1}}{a_{n}+n-2} \leq \frac{1}{(n-1)^{2}}
$$

does holds.
3 Let $A^{\prime} \in(B C), B^{\prime} \in(C A), C^{\prime} \in(A B)$ be the points of tangency of the excribed circles of triangle $\triangle A B C$ with the sides of $\triangle A B C$. Let R^{\prime} be the circumradius of triangle $\triangle A^{\prime} B^{\prime} C^{\prime}$. Show that

$$
R^{\prime}=\frac{1}{2 r} \sqrt{2 R\left(2 R-h_{a}\right)\left(2 R-h_{b}\right)\left(2 R-h_{c}\right)}
$$

where as usual, R is the circumradius of $\triangle A B C, r$ is the inradius of $\triangle A B C$, and h_{a}, h_{b}, h_{c} are the lengths of altitudes of $\triangle A B C$.

4 Let p be a positive integer, $p>1$. Find the number of $m \times n$ matrices with entries in the set $\{1,2, \ldots, p\}$ and such that the sum of elements on each row and each column is not divisible by p.

