AoPS Community

Mediterranean Mathematics Olympiad 2011

www.artofproblemsolving.com/community/c5267
by bluecarneal

1 A Mediterranean polynomial has only real roots and it is of the form

$$
P(x)=x^{10}-20 x^{9}+135 x^{8}+a_{7} x^{7}+a_{6} x^{6}+a_{5} x^{5}+a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}
$$

with real coefficients $a_{0} \ldots, a_{7}$. Determine the largest real number that occurs as a root of some Mediterranean polynomial.
(Proposed by Gerhard Woeginger, Austria)
2 Let A be a finite set of positive reals, let $B=\{x / y \mid x, y \in A\}$ and let $C=\{x y \mid x, y \in A\}$. Show that $|A| \cdot|B| \leq|C|^{2}$.
(Proposed by Gerhard Woeginger, Austria)
3 A regular tetrahedron of height h has a tetrahedron of height $x h$ cut off by a plane parallel to the base. When the remaining frustrum is placed on one of its slant faces on a horizontal plane, it is just on the point of falling over. (In other words, when the remaining frustrum is placed on one of its slant faces on a horizontal plane, the projection of the center of gravity G of the frustrum is a point of the minor base of this slant face.)
Show that x is a root of the equation $x^{3}+x^{2}+x=2$.
4 Let D be the foot of the internal bisector of the angle $\angle A$ of the triangle $A B C$. The straight line which joins the incenters of the triangles $A B D$ and $A C D$ cut $A B$ and $A C$ at M and N, respectively.
Show that $B N$ and $C M$ meet on the bisector $A D$.

