AoPS Community

Mediterranean Mathematics Olympiad 2012

www.artofproblemsolving.com/community/c5268
by djb86, sqing, Math-Iover123

1 For a real number $\alpha>0$, consider the infinite real sequence defined by $x_{1}=1$ and

$$
\alpha x_{n}=x_{1}+x_{2}+\cdots+x_{n+1} \quad \text { for } n \geq 1 .
$$

Determine the smallest α for which all terms of this sequence are positive reals.
(Proposed by Gerhard Woeginger, Austria)
2 In an acute $\triangle A B C$, prove that

$$
\begin{aligned}
& \frac{1}{3}\left(\frac{\tan ^{2} A}{\tan B \tan C}+\frac{\tan ^{2} B}{\tan C \tan A}+\frac{\tan ^{2} C}{\tan A \tan B}\right) \\
& \quad+3\left(\frac{1}{\tan A+\tan B+\tan C}\right)^{\frac{2}{3}} \geq 2
\end{aligned}
$$

3 Consider a binary matrix M (all entries are 0 or 1) on r rows and c columns, where every row and every column contain at least one entry equal to 1 . Prove that there exists an entry $M(i, j)=1$, such that the corresponding row-sum $R(i)$ and column-sum $C(j)$ satisfy $r R(i) \geq c C(j)$. (Proposed by Gerhard Woeginger, Austria)

4 Let O be the circumcenter, R be the circumradius, and k be the circumcircle of a triangle $A B C$
Let k_{1} be a circle tangent to the rays $A B$ and $A C$, and also internally tangent to k.
Let k_{2} be a circle tangent to the rays $A B$ and $A C$, and also externally tangent to k. Let A_{1} and A_{2} denote the respective centers of k_{1} and k_{2}.
Prove that: $\left(O A_{1}+O A_{2}\right)^{2}-A_{1} A_{2}^{2}=4 R^{2}$.

