AoPS Community

Danube Mathematical Olympiad 2005

www.artofproblemsolving.com/community/c5271
by darij grinberg, e.lopes

1 Prove that the equation $4 x^{3}-3 x+1=2 y^{2}$ has at least 31 solutions in positive integers x and y with $x \leq 2005$.

2 Prove that the sum:

$$
S_{n}=\binom{n}{1}+\binom{n}{3} \cdot 2005+\binom{n}{5} \cdot 2005^{2}+\ldots=\sum_{k=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\binom{n}{2 k+1} \cdot 2005^{k}
$$

is divisible by 2^{n-1} for any positive integer n.
$3 \quad$ Let \mathcal{C} be a circle with center O, and let A be a point outside the circle. Let the two tangents from the point A to the circle \mathcal{C} meet this circle at the points S and T, respectively. Given a point M on the circle \mathcal{C} which is different from the points S and T, let the line $M A$ meet the perpendicular from the point S to the line $M O$ at P.

Prove that the reflection of the point S in the point P lies on the line $M T$.
$4 \quad$ Let k and n be positive integers. Consider an array of $2\left(2^{n}-1\right)$ rows by k columns. A 2 -coloring of the elements of the array is said to be acceptable if any two columns agree on less than $2^{n}-1$ entries on the same row.

Given n, determine the maximum value of k for an acceptable 2 -coloring to exist.

