AoPS Community

Danube Mathematical Olympiad 2010

www.artofproblemsolving.com/community/c5272
by littletush, Maxim Bogdan, paul1703

1 Determine all integer numbers $n \geq 3$ such that the regular n-gon can be decomposed into isosceles triangles by non-intersecting diagonals.

2 Given a triangle $A B C$, let $A^{\prime}, B^{\prime}, C^{\prime}$ be the perpendicular feet dropped from the centroid G of the triangle $A B C$ onto the sides $B C, C A, A B$ respectively. Reflect $A^{\prime}, B^{\prime}, C^{\prime}$ through G to $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ respectively. Prove that the lines $A A^{\prime \prime}, B B^{\prime \prime}, C C^{\prime \prime}$ are concurrent.

3 All sides and diagonals of a convex n-gon, $n \geq 3$, are coloured one of two colours. Show that there exist $\left[\frac{n+1}{3}\right]$ pairwise disjoint monochromatic segments.
(Two segments are disjoint if they do not share an endpoint or an interior point).
4 Let p be a prime number of the form $4 k+3$. Prove that there are no integers w, x, y, z whose product is not divisible by p, such that:

$$
w^{2 p}+x^{2 p}+y^{2 p}=z^{2 p} .
$$

5 Let $n \geq 3$ be a positive integer. Find the real numbers $x_{1} \geq 0, \ldots, x_{n} \geq 0$, with $x_{1}+x_{2}+\ldots+x_{n}=$ n, for which the expression

$$
(n-1)\left(x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}\right)+n x_{1} x_{2} \ldots x_{n}
$$

takes a minimal value.

