AoPS Community

Moldova Team Selection Test 2005

www.artofproblemsolving.com/community/c5301
by darij grinberg, Sasha, Tales

Day 1

$1 \quad$ Let Γ be a circle and let d be a line such that Γ and d have no common points. Further, let $A B$ be a diameter of the circle Γ; assume that this diameter $A B$ is perpendicular to the line d, and the point B is nearer to the line d than the point A. Let C be an arbitrary point on the circle Γ, different from the points A and B. Let D be the point of intersection of the lines $A C$ and d. One of the two tangents from the point D to the circle Γ touches this circle Γ at a point E; hereby, we assume that the points B and E lie in the same halfplane with respect to the line $A C$. Denote by F the point of intersection of the lines $B E$ and d. Let the line $A F$ intersect the circle Γ at a point G, different from A.

Prove that the reflection of the point G in the line $A B$ lies on the line $C F$.
2 Let a, b, c be positive reals such that $a^{4}+b^{4}+c^{4}=3$. Prove that $\sum \frac{1}{4-a b} \leq 1$, where the \sum sign stands for cyclic summation.

Alternative formulation: For any positive reals a, b, c satisfying $a^{4}+b^{4}+c^{4}=3$, prove the inequality
$\frac{1}{4-b c}+\frac{1}{4-c a}+\frac{1}{4-a b} \leq 1$.
3

$$
A=3 \sum_{m=1}^{n^{2}}\left(\frac{1}{2}-\{\sqrt{m}\}\right)
$$

where n is an positive integer. Find the largest k such that n^{k} divides $[A]$.
$4 n$ is a positive integer, K the set of polynoms of real variables $x_{1}, x_{2}, \ldots, x_{n+1}$ and $y_{1}, y_{2}, \ldots, y_{n+1}$, function $f: K \rightarrow K$ satisfies

$$
f(p+q)=f(p)+f(q), \quad f(p q)=f(p) q+p f(q), \quad(\forall) p, q \in K .
$$

If $f\left(x_{i}\right)=(n-1) x_{i}+y_{i}, \quad f\left(y_{i}\right)=2 n y_{i}$ for all $i=1,2, \ldots, n+1$ and

$$
\prod_{i=1}^{n+1}\left(t x_{i}+y_{i}\right)=\sum_{i=0}^{n+1} p_{i} t^{n+1-i}
$$

for any real t, prove, that for all $k=1, \ldots, n+1$

$$
f\left(p_{k-1}\right)=k p_{k}+(n+1)(n+k-2) p_{k-1}
$$

Day 2

1 In triangle $A B C, M \in(B C), \frac{B M}{B C}=\alpha, N \in(C A), \frac{C N}{C A}=\beta, P \in(A B), \frac{A P}{A B}=\gamma$.
Let $A M \cap B N=\{D\}, B N \cap C P=\{E\}, C P \cap A M=\{F\}$. Prove that $S_{D E F}=S_{B M D}+S_{C N E}+$ $S_{A P F}$ iff $\alpha+\beta+\gamma=1$.

2 Let $m \in N$ and $E(x, y, m)=\left(\frac{72}{x}\right)^{m}+\left(\frac{72}{y}\right)^{m}-x^{m}-y^{m}$, where x and y are positive divisors of 72.
a) Prove that there exist infinitely many natural numbers m so, that 2005 divides $E(3,12, m)$ and $E(9,6, m)$.
b) Find the smallest positive integer number m_{0} so, that 2005 divides $E\left(3,12, m_{0}\right)$ and $E\left(9,6, m_{0}\right)$.

3 Does there exist such a configuration of 22 circles and 22 point, that any circle contains at leats 7 points and any point belongs at least to 7 circles?

4 Find the largest positive $p(p>1)$ such, that $\forall a, b, c \in\left[\frac{1}{p}, p\right]$ the following inequality takes place

$$
9(a b+b c+c a)\left(a^{2}+b^{2}+c^{2}\right) \geq(a+b+c)^{4}
$$

Day 3

1 Let $A B C$ and $A_{1} B_{1} C_{1}$ be two triangles. Prove that $\frac{a}{a_{1}}+\frac{b}{b_{1}}+\frac{c}{c_{1}} \leq \frac{3 R}{2 r_{1}}$,
where $a=B C, b=C A, c=A B$ are the sidelengths of triangle $A B C$, where $a_{1}=B_{1} C_{1}$, $b_{1}=C_{1} A_{1}, c_{1}=A_{1} B_{1}$ are the sidelengths of triangle $A_{1} B_{1} C_{1}$, where R is the circumradius of triangle $A B C$ and r_{1} is the inradius of triangle $A_{1} B_{1} C_{1}$.

2 Let O be the circumcenter of an acute-angled triangle $A B C$ with $\angle B<\angle C$. The line $A O$ meets the side $B C$ at D. The circumcenters of the triangles $A B D$ and $A C D$ are E and F, respectively. Extend the sides $B A$ and $C A$ beyond A, and choose on the respective extensions points G and H such that $A G=A C$ and $A H=A B$. Prove that the quadrilateral $E F G H$ is a rectangle if and only if $\angle A C B-\angle A B C=60^{\circ}$.

Proposed by Hojoo Lee, Korea
3 For an $n \times n$ matrix A, let X_{i} be the set of entries in row i, and Y_{j} the set of entries in column $j, 1 \leq i, j \leq n$. We say that A is golden if $X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}$ are distinct sets. Find the least
integer n such that there exists a 2004×2004 golden matrix with entries in the set $\{1,2, \ldots, n\}$.

4 Given functions $f, g: N^{*} \rightarrow N^{*}, g$ is surjective and $2 f(n)^{2}=n^{2}+g(n)^{2}, \forall n>0$. Prove that if $|f(n)-n| \leq 2005 \sqrt{n}, \forall n>0$, then $f(n)=n$ for infinitely many n.

