

AoPS Community

2005 Moldova Team Selection Test

Moldova Team Selection Test 2005

www.artofproblemsolving.com/community/c5301 by darij grinberg, Sasha, Tales

Day 1

1 Let Γ be a circle and let d be a line such that Γ and d have no common points. Further, let AB be a diameter of the circle Γ ; assume that this diameter AB is perpendicular to the line d, and the point B is nearer to the line d than the point A. Let C be an arbitrary point on the circle Γ , different from the points A and B. Let D be the point of intersection of the lines AC and d. One of the two tangents from the point D to the circle Γ touches this circle Γ at a point E; hereby, we assume that the points B and E lie in the same halfplane with respect to the line AC. Denote by F the point of intersection of the lines BE and d. Let the line AF intersect the circle Γ at a point G, different from A.

Prove that the reflection of the point G in the line AB lies on the line CF.

2 Let *a*, *b*, *c* be positive reals such that $a^4 + b^4 + c^4 = 3$. Prove that $\sum \frac{1}{4-ab} \le 1$, where the \sum sign stands for cyclic summation.

Alternative formulation: For any positive reals a, b, c satisfying $a^4 + b^4 + c^4 = 3$, prove the inequality $\frac{1}{4-bc} + \frac{1}{4-ca} + \frac{1}{4-ab} \le 1$.

3

$$A = 3\sum_{m=1}^{n^2} (\frac{1}{2} - \{\sqrt{m}\})$$

where *n* is an positive integer. Find the largest *k* such that n^k divides [*A*].

4 n is a positive integer, K the set of polynoms of real variables $x_1, x_2, ..., x_{n+1}$ and $y_1, y_2, ..., y_{n+1}$, function $f: K \to K$ satisfies

$$f(p+q) = f(p) + f(q), \quad f(pq) = f(p)q + pf(q), \quad (\forall)p,q \in K.$$

If
$$f(x_i) = (n-1)x_i + y_i$$
, $f(y_i) = 2ny_i$ for all $i = 1, 2, ..., n+1$ and

$$\prod_{i=1}^{n+1} (tx_i + y_i) = \sum_{i=0}^{n+1} p_i t^{n+1-i}$$

for any real t, prove, that for all k = 1, ..., n + 1

$$f(p_{k-1}) = kp_k + (n+1)(n+k-2)p_{k-1}$$

AoPS Community

2005 Moldova Team Selection Test

Day 2	
1	In triangle <i>ABC</i> , $M \in (BC)$, $\frac{BM}{BC} = \alpha$, $N \in (CA)$, $\frac{CN}{CA} = \beta$, $P \in (AB)$, $\frac{AP}{AB} = \gamma$. Let $AM \cap BN = \{D\}$, $BN \cap CP = \{E\}$, $CP \cap AM = \{F\}$. Prove that $S_{DEF} = S_{BMD} + S_{CNE} + S_{APF}$ iff $\alpha + \beta + \gamma = 1$.
2	Let $m \in N$ and $E(x, y, m) = (\frac{72}{x})^m + (\frac{72}{y})^m - x^m - y^m$, where x and y are positive divisors of 72. a) Prove that there exist infinitely many natural numbers m so, that 2005 divides $E(3, 12, m)$ and $E(9, 6, m)$. b) Find the smallest positive integer number m_0 so, that 2005 divides $E(3, 12, m_0)$ and $E(9, 6, m_0)$
3	Does there exist such a configuration of 22 circles and 22 point, that any circle contains at leats 7 points and any point belongs at least to 7 circles?
4	Find the largest positive p ($p > 1$) such, that $\forall a, b, c \in [\frac{1}{p}, p]$ the following inequality takes place $9(ab + bc + ca)(a^2 + b^2 + c^2) \ge (a + b + c)^4$

Day 3

1 Let ABC and $A_1B_1C_1$ be two triangles. Prove that $\frac{a}{a_1} + \frac{b}{b_1} + \frac{c}{c_1} \le \frac{3R}{2r_1}$,

where a = BC, b = CA, c = AB are the sidelengths of triangle ABC, where $a_1 = B_1C_1$, $b_1 = C_1A_1$, $c_1 = A_1B_1$ are the sidelengths of triangle $A_1B_1C_1$, where R is the circumradius of triangle ABC and r_1 is the inradius of triangle $A_1B_1C_1$.

2 Let *O* be the circumcenter of an acute-angled triangle *ABC* with $\angle B < \angle C$. The line *AO* meets the side *BC* at *D*. The circumcenters of the triangles *ABD* and *ACD* are *E* and *F*, respectively. Extend the sides *BA* and *CA* beyond *A*, and choose on the respective extensions points *G* and *H* such that AG = AC and AH = AB. Prove that the quadrilateral *EFGH* is a rectangle if and only if $\angle ACB - \angle ABC = 60^{\circ}$.

Proposed by Hojoo Lee, Korea

3 For an $n \times n$ matrix A, let X_i be the set of entries in row i, and Y_j the set of entries in column $j, 1 \le i, j \le n$. We say that A is *golden* if $X_1, \ldots, X_n, Y_1, \ldots, Y_n$ are distinct sets. Find the least

AoPS Community

2005 Moldova Team Selection Test

integer *n* such that there exists a 2004×2004 golden matrix with entries in the set $\{1, 2, \dots, n\}$.

4	Given functions $f, g: N^* \to N^*$, g is surjective and $2f(n)^2 = n^2 + g(n)^2$, $\forall n > 0$. Prove that if
	$ f(n) - n \leq 2005\sqrt{n}$, $\forall n > 0$, then $f(n) = n$ for infinitely many n .

AoPS Online
AoPS Academy
AoPS Casterny

Art of Problem Solving is an ACS WASC Accredited School.