

AoPS Community

Moldova Team Selection Test 2006

www.artofproblemsolving.com/community/c5302 by prowler, Valiowk, Sailor, Sasha, iura, freemind

Day 1

1 Determine all even numbers $n, n \in \mathbb{N}$ such that

$$\frac{1}{d_1} + \frac{1}{d_2} + \dots + \frac{1}{d_k} = \frac{1620}{1003},$$

where d_1, d_2, \ldots, d_k are all different divisors of n.

- **2** Consider a right-angled triangle *ABC* with the hypothenuse AB = 1. The bisector of $\angle ACB$ cuts the medians *BE* and *AF* at *P* and *M*, respectively. If $AF \cap BE = \{P\}$, determine the maximum value of the area of $\triangle MNP$.
- **3** Let *a*, *b*, *c* be sides of the triangle. Prove that

$$a^{2}\left(\frac{b}{c}-1\right)+b^{2}\left(\frac{c}{a}-1\right)+c^{2}\left(\frac{a}{b}-1\right)\geq0.$$

4 Let *m* circles intersect in points *A* and *B*. We write numbers using the following algorithm: we write 1 in points *A* and *B*, in every midpoint of the open arc *AB* we write 2, then between every two numbers written in the midpoint we write their sum and so on repeating *n* times. Let r(n,m)

be the number of appearances of the number n writing all of them on our m circles.

a) Determine r(n,m);

b) For n = 2006, find the smallest *m* for which r(n, m) is a perfect square.

Example for half arc: 1 - 1; 1 - 2 - 1; 1 - 3 - 2 - 3 - 1; 1 - 4 - 3 - 5 - 2 - 5 - 3 - 4 - 1; 1 - 5 - 4 - 7 - 3 - 8 - 5 - 7 - 2 - 7 - 5 - 8 - 3 - 7 - 4 - 5 - 1...

Day 2 1 Let (a_n) be the Lucas sequence: $a_0 = 2, a_1 = 1, a_{n+1} = a_n + a_{n-1}$ for $n \ge 1$. Show that a_{59} divides $(a_{30})^{59} - 1$.

AoPS Community

2006 Moldova Team Selection Test

- **2** Let C_1 be a circle inside the circle C_2 and let P in the interior of C_1 , Q in the exterior of C_2 . One draws variable lines l_i through P, not passing through Q. Let l_i intersect C_1 in A_i , B_i , and let the circumcircle of QA_iB_i intersect C_2 in M_i , N_i . Show that all lines M_i , N_i are concurrent.
- **3** Let a, b, c be sides of a triangle and p its semiperimeter. Show that $a\sqrt{\frac{(p-b)(p-c)}{bc}} + b\sqrt{\frac{(p-c)(p-a)}{ac}} + c\sqrt{\frac{(p-a)(p-b)}{ab}} \ge p$
- 4 Let $A = \{1, 2, ..., n\}$. Find the number of unordered triples (X, Y, Z) that satisfy $X \bigcup Y \bigcup Z = A$

Day 3 March 26th

- 1 Let the point *P* in the interior of the triangle *ABC*. (*AP*, (*BP*, (*CP* intersect the circumcircle of *ABC* at A_1, B_1, C_1 . Prove that the maximal value of the sum of the areas A_1BC , B_1AC , C_1AB is p(R r), where p, r, R are the usual notations for the triangle *ABC*.
- **2** Let $n \in N$ $n \ge 2$ and the set X with n + 1 elements. The ordered sequences (a_1, a_2, \ldots, a_n) and (b_1, b_2, \ldots, b_n) of distinct elements of X are said to be *separated* if there exists $i \ne j$ such that $a_i = b_j$. Determine the maximal number of ordered sequences of n elements from X such that any two of them are *separated*. Note: ordered means that, for example $(1, 2, 3) \ne (2, 3, 1)$.
- **3** Positive real numbers a, b, c satisfy the relation abc = 1. Prove the inequality: $\frac{a+3}{(a+1)^2} + \frac{b+3}{(b+1)^2} + \frac{c+3}{(c+1)^2} \ge 3$.
- 4 Let f(n) denote the number of permutations $(a_1, a_2, ..., a_n)$ of the set $\{1, 2, ..., n\}$, which satisfy the conditions: $a_1 = 1$ and $|a_i a_{i+1}| \le 2$, for any i = 1, 2, ..., n-1. Prove that f(2006) is divisible by 3.

Art of Problem Solving is an ACS WASC Accredited School.