AoPS Community

Moldova Team Selection Test 2006

www.artofproblemsolving.com/community/c5302
by prowler, Valiowk, Sailor, Sasha, iura, freemind

Day 1

1 Determine all even numbers $n, n \in \mathbb{N}$ such that

$$
\frac{1}{d_{1}}+\frac{1}{d_{2}}+\cdots+\frac{1}{d_{k}}=\frac{1620}{1003}
$$

where $d_{1}, d_{2}, \ldots, d_{k}$ are all different divisors of n.
2 Consider a right-angled triangle $A B C$ with the hypothenuse $A B=1$. The bisector of $\angle A C B$ cuts the medians $B E$ and $A F$ at P and M, respectively. If $A F \cap B E=\{P\}$, determine the maximum value of the area of $\triangle M N P$.

3 Let a, b, c be sides of the triangle. Prove that

$$
a^{2}\left(\frac{b}{c}-1\right)+b^{2}\left(\frac{c}{a}-1\right)+c^{2}\left(\frac{a}{b}-1\right) \geq 0
$$

4 Let m circles intersect in points A and B. We write numbers using the following algorithm: we write 1 in points A and B, in every midpoint of the open arc $A B$ we write 2 , then between every two numbers written in the midpoint we write their sum and so on repeating n times. Let $r(n, m)$
be the number of appearances of the number n writing all of them on our m circles.
a) Determine $r(n, m)$;
b) For $n=2006$, find the smallest m for which $r(n, m)$ is a perfect square.

Example for half arc: $1-1 ; 1-2-1$; $1-3-2-3-1 ; 1-4-3-5-2-5-3-4-1$; $1-5-4-7-3-8-5-7-2-7-5-8-3-7-4-5-1 \ldots$

Day 2

1 Let $\left(a_{n}\right)$ be the Lucas sequence: $a_{0}=2, a_{1}=1, a_{n+1}=a_{n}+a_{n-1}$ for $n \geq 1$. Show that a_{59} divides $\left(a_{30}\right)^{59}-1$.

2 Let C_{1} be a circle inside the circle C_{2} and let P in the interior of C_{1}, Q in the exterior of C_{2}. One draws variable lines l_{i} through P, not passing through Q. Let l_{i} intersect C_{1} in A_{i}, B_{i}, and let the circumcircle of $Q A_{i} B_{i}$ intersect C_{2} in M_{i}, N_{i}. Show that all lines M_{i}, N_{i} are concurrent.

3 Let a, b, c be sides of a triangle and p its semiperimeter. Show that $a \sqrt{\frac{(p-b)(p-c)}{b c}}+b \sqrt{\frac{(p-c)(p-a)}{a c}}+c \sqrt{\frac{(p-a)(p-b)}{a b}} \geq p$

4 Let $A=\{1,2, \ldots, n\}$. Find the number of unordered triples (X, Y, Z) that satisfy $X \bigcup Y \bigcup Z=$ A

Day 3 March 26th

1 Let the point P in the interior of the triangle $A B C .(A P,(B P,(C P$ intersect the circumcircle of $A B C$ at A_{1}, B_{1}, C_{1}. Prove that the maximal value of the sum of the areas $A_{1} B C, B_{1} A C, C_{1} A B$ is $p(R-r)$, where p, r, R are the usual notations for the triangle $A B C$.

2 Let $n \in N n \geq 2$ and the set X with $n+1$ elements. The ordered sequences ($a_{1}, a_{2}, \ldots, a_{n}$) and $\left(b_{1}, b_{2}, \ldots b_{n}\right)$ of distinct elements of X are said to be separated if there exists $i \neq j$ such that $a_{i}=b_{j}$. Determine the maximal number of ordered sequences of n elements from X such that any two of them are separated.
Note: ordered means that, for example $(1,2,3) \neq(2,3,1)$.
3 Positive real numbers a, b, c satisfy the relation $a b c=1$. Prove the inequality: $\frac{a+3}{(a+1)^{2}}+\frac{b+3}{(b+1)^{2}}+$ $\frac{c+3}{(c+1)^{2}} \geq 3$.

4 Let $f(n)$ denote the number of permutations $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of the set $\{1,2, \ldots, n\}$, which satisfy the conditions: $a_{1}=1$ and $\left|a_{i}-a_{i+1}\right| \leq 2$, for any $i=1,2, \ldots, n-1$. Prove that $f(2006)$ is divisible by 3 .

