

# **AoPS Community**

# 2008 Moldova Team Selection Test

#### Moldova Team Selection Test 2008

www.artofproblemsolving.com/community/c5304 by freemind, pohoatza

### Day 1

\_

\_

\_

\_

| 1     | Let $p$ be a prime number. Solve in $\mathbb{N}_0 \times \mathbb{N}_0$ the equation $x^3 + y^3 - 3xy = p - 1$ .                                                                                                                                                                                                                                     |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2     | We say the set $\{1, 2,, 3k\}$ has property $D$ if it can be partitioned into disjoint triples so that in each of them a number equals the sum of the other two.                                                                                                                                                                                    |
|       | (a) Prove that $\{1, 2, \ldots, 3324\}$ has property $D$ .                                                                                                                                                                                                                                                                                          |
|       | (b) Prove that $\{1, 2, \ldots, 3309\}$ hasn't property $D$ .                                                                                                                                                                                                                                                                                       |
| 3     | Let $\Gamma(I, r)$ and $\Gamma(O, R)$ denote the incircle and circumcircle, respectively, of a triangle <i>ABC</i> .<br>Consider all the triangels $A_i B_i C_i$ which are simultaneously inscribed in $\Gamma(O, R)$ and circumscribed to $\Gamma(I, r)$ . Prove that the centroids of these triangles are concyclic.                              |
| 4     | A non-zero polynomial $S \in \mathbb{R}[X, Y]$ is called homogeneous of degree $d$ if there is a positive integer $d$ so that $S(\lambda x, \lambda y) = \lambda^d S(x, y)$ for any $\lambda \in \mathbb{R}$ . Let $P, Q \in \mathbb{R}[X, Y]$ so that $Q$ is homogeneous and $P$ divides $Q$ (that is, $P Q$ ). Prove that $P$ is homogeneous too. |
| Day 2 | March 29th                                                                                                                                                                                                                                                                                                                                          |
| 1     | Find all solutions $(x, y) \in \mathbb{R} \times \mathbb{R}$ of the following system: $\begin{cases} x^3 + 3xy^2 = 49, \\ x^2 + 8xy + y^2 = 8y + 17x. \end{cases}$                                                                                                                                                                                  |
| 2     | Let $a_1, \ldots, a_n$ be positive reals so that $a_1 + a_2 + \ldots + a_n \leq \frac{n}{2}$ . Find the minimal value of $\sqrt{a_1^2 + \frac{1}{a_2^2}} + \sqrt{a_2^2 + \frac{1}{a_3^2}} + \ldots + \sqrt{a_n^2 + \frac{1}{a_1^2}}$ .                                                                                                              |
| 3     | Let $\omega$ be the circumcircle of $ABC$ and let $D$ be a fixed point on $BC$ , $D \neq B$ , $D \neq C$ . Let $X$ be a variable point on $(BC)$ , $X \neq D$ . Let $Y$ be the second intersection point of $AX$ and $\omega$ . Prove that the circumcircle of $XYD$ passes through a fixed point.                                                  |
| 4     | Find the number of even permutations of $\{1, 2, \dots, n\}$ with no fixed points.                                                                                                                                                                                                                                                                  |
|       |                                                                                                                                                                                                                                                                                                                                                     |

### **AoPS Community**

## 2008 Moldova Team Selection Test

- 1 Determine a subset  $A \subset \mathbb{N}^*$  having 5 different elements, so that the sum of the squares of its elements equals their product. Do not simply post the subset, show how you found it.
- **2** Let *p* be a prime number and *k*, *n* positive integers so that gcd(p, n) = 1. Prove that  $\binom{n \cdot p^k}{p^k}$  and *p* are coprime.
- 3 In triangle *ABC* the bisector of  $\angle ACB$  intersects *AB* at *D*. Consider an arbitrary circle *O* passing through *C* and *D*, so that it is not tangent to *BC* or *CA*. Let  $O \cap BC = \{M\}$  and  $O \cap CA = \{N\}$ .

a) Prove that there is a circle S so that DM and DN are tangent to S in M and N, respectively. b) Circle S intersects lines BC and CA in P and Q respectively. Prove that the lengths of MP and NQ do not depend on the choice of circle O.

A non-empty set *S* of positive integers is said to be *good* if there is a coloring with 2008 colors of all positive integers so that no number in *S* is the sum of two different positive integers (not necessarily in *S*) of the same color. Find the largest value *t* can take so that the set  $S = \{a + 1, a + 2, a + 3, ..., a + t\}$  is good, for any positive integer *a*.

I have the feeling that I've seen this problem before, so if I'm right, maybe someone can post some links...

AoPS Online 🔇 AoPS Academy 🔇 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.