Art of Problem Solving

AoPS Community

Moldova Team Selection Test 2008

www.artofproblemsolving.com/community/c5304
by freemind, pohoatza

Day 1

$1 \quad$ Let p be a prime number. Solve in $\mathbb{N}_{0} \times \mathbb{N}_{0}$ the equation $x^{3}+y^{3}-3 x y=p-1$.
2 We say the set $\{1,2, \ldots, 3 k\}$ has property D if it can be partitioned into disjoint triples so that in each of them a number equals the sum of the other two.
(a) Prove that $\{1,2, \ldots, 3324\}$ has property D.
(b) Prove that $\{1,2, \ldots, 3309\}$ hasn't property D.

3 Let $\Gamma(I, r)$ and $\Gamma(O, R)$ denote the incircle and circumcircle, respectively, of a triangle $A B C$. Consider all the triangels $A_{i} B_{i} C_{i}$ which are simultaneously inscribed in $\Gamma(O, R)$ and circumscribed to $\Gamma(I, r)$. Prove that the centroids of these triangles are concyclic.

4 A non-zero polynomial $S \in \mathbb{R}[X, Y]$ is called homogeneous of degree d if there is a positive integer d so that $S(\lambda x, \lambda y)=\lambda^{d} S(x, y)$ for any $\lambda \in \mathbb{R}$. Let $P, Q \in \mathbb{R}[X, Y]$ so that Q is homogeneous and P divides Q (that is, $P \mid Q$). Prove that P is homogeneous too.

Day 2 March 29th
1 Find all solutions $(x, y) \in \mathbb{R} \times \mathbb{R}$ of the following system: $\left\{\begin{array}{l}x^{3}+3 x y^{2}=49, \\ x^{2}+8 x y+y^{2}=8 y+17 x .\end{array}\right.$
2 Let a_{1}, \ldots, a_{n} be positive reals so that $a_{1}+a_{2}+\ldots+a_{n} \leq \frac{n}{2}$. Find the minimal value of $\sqrt{a_{1}^{2}+\frac{1}{a_{2}^{2}}}+\sqrt{a_{2}^{2}+\frac{1}{a_{3}^{2}}}+\ldots+\sqrt{a_{n}^{2}+\frac{1}{a_{1}^{2}}}$.

3 Let ω be the circumcircle of $A B C$ and let D be a fixed point on $B C, D \neq B, D \neq C$. Let X be a variable point on $(B C), X \neq D$. Let Y be the second intersection point of $A X$ and ω. Prove that the circumcircle of $X Y D$ passes through a fixed point.

4 Find the number of even permutations of $\{1,2, \ldots, n\}$ with no fixed points.

Day 3 March 30th

1 Determine a subset $A \subset \mathbb{N}^{*}$ having 5 different elements, so that the sum of the squares of its elements equals their product.
Do not simply post the subset, show how you found it.
2 Let p be a prime number and k, n positive integers so that $\operatorname{gcd}(p, n)=1$. Prove that $\binom{n \cdot p^{k}}{p^{k}}$ and p are coprime.

3 In triangle $A B C$ the bisector of $\angle A C B$ intersects $A B$ at D. Consider an arbitrary circle O passing through C and D, so that it is not tangent to $B C$ or $C A$. Let $O \cap B C=\{M\}$ and $O \cap C A=\{N\}$.
a) Prove that there is a circle S so that $D M$ and $D N$ are tangent to S in M and N, respectively. b) Circle S intersects lines $B C$ and $C A$ in P and Q respectively. Prove that the lengths of $M P$ and $N Q$ do not depend on the choice of circle O.

4 A non-empty set S of positive integers is said to be good if there is a coloring with 2008 colors of all positive integers so that no number in S is the sum of two different positive integers (not necessarily in S) of the same color. Find the largest value t can take so that the set $S=\{a+1, a+2, a+3, \ldots, a+t\}$ is good, for any positive integer a.

I have the feeling that I've seen this problem before, so if I'm right, maybe someone can post some links...

