Art of Problem Solving

AoPS Community

Moldova Team Selection Test 2010

www.artofproblemsolving.com/community/c5306
by sandu2508, discredit

Day 1

1 Find all 3-digit numbers such that placing to the right side of the number its successor we get a 6 -digit number which is a perfect square.

2 Prove that for any real number x the following inequality is true: $\max \{|\sin x|,|\sin (x+2010)|\}>$ $\frac{1}{\sqrt{17}}$

3 Let $A B C D$ be a convex quadrilateral. We have that $\angle B A C=3 \angle C A D, A B=C D, \angle A C D=$ $\angle C B D$. Find angle $\angle A C D$

4 Let $n \geq 6$ be a even natural number. Prove that any cube can be divided in $\frac{3 n(n-2)}{4}+2$ cubes.

Day 2

1 Let $p \in \mathbb{R}_{+}$and $k \in \mathbb{R}_{+}$. The polynomial $F(x)=x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+k^{4}$ with real coefficients has 4 negative roots. Prove that $F(p) \geq(p+k)^{4}$

2 Let $x_{1}, x_{2}, \ldots, x_{n}$ be positive real numbers with sum 1. Find the integer part of: $E=x_{1}+$ $\frac{x_{2}}{\sqrt{1-x_{1}^{2}}}+\frac{x_{3}}{\sqrt{1-\left(x_{1}+x_{2}\right)^{2}}}+\cdots+\frac{x_{n}}{\sqrt{1-\left(x_{1}+x_{2}+\cdots+x_{n-1}\right)^{2}}}$

3 Let $A B C$ be an acute triangle. H is the orthocenter and M is the middle of the side $B C$. A line passing through H and perpendicular to $H M$ intersect the segment $A B$ and $A C$ in P and Q. Prove that $M P=M Q$

4 In a chess tournament $2 n+3$ players take part. Every two play exactly one match. The schedule is such that no two matches are played at the same time, and each player, after taking part in a match, is free in at least n next (consecutive) matches. Prove that one of the players who play in the opening match will also play in the closing match.

