

AoPS Community

2013 Moldova Team Selection Test

Moldova Team Selection Test 2013

www.artofproblemsolving.com/community/c5308 by mikeshadow, lyukhson, Hypernova

1	For any positive real numbers x, y, z , prove that $\frac{x}{y} + \frac{y}{z} + \frac{z}{x} \ge \frac{z(x+y)}{y(y+z)} + \frac{x(z+y)}{z(x+z)} + \frac{y(x+z)}{x(x+y)}$
2	We call a triangle $\triangle ABC$, <i>Q</i> -angled if $\tan \angle A$, $\tan \angle B$, $\tan \angle C \in \mathbb{Q}$, where $\angle A$, $\angle B$, $\angle C$ are the interior angles of the triangle $\triangle ABC$. <i>a</i>) Prove that <i>Q</i> -angled triangles exist; <i>b</i>) Let triangle $\triangle ABC$ be <i>Q</i> -angled. Prove that for any non-negative integer <i>n</i> , numbers of the form $E_n = \sin^n \angle A \sin^n \angle B \sin^n \angle C + \cos^n \angle A \cos^n \angle B \cos^n \angle C$ are rational.
3	Let $ABCD$ be a cyclic quadrilateral whose diagonals AC and BD meet at E . The extensions of the sides AD and BC beyond A and B meet at F . Let G be the point such that $ECGD$ is a parallelogram, and let H be the image of E under reflection in AD . Prove that D, H, F, G are concyclic.
4	Consider a positive real number a and a positive integer m . The sequence $(x_k)_{k\in\mathbb{Z}^+}$ is defined as: $x_1 = 1$, $x_2 = a$, $x_{n+2} = \sqrt[m+1]{x_{n+1}^m x_n}$. a) Prove that the sequence is converging. b) Find $\lim_{n\to\infty} x_n$.
Day 2	
1	Let <i>m</i> be the number of ordered solutions (a, b, c, d, e) satisfying: 1) $a, b, c, d, e \in \mathbb{Z}^+$; 2) $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d} + \frac{1}{e} = 1$; Prove that <i>m</i> is odd.
2	Let $a_n = 1 + n!(\frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + + \frac{1}{n!})$ for any $n \in \mathbb{Z}^+$. Consider a_n points in the plane, no 3 of them collinear. The segments between any 2 of them are colored in one of n colors. Prove that among them there exist 3 points forming a monochromatic triangle.
3	The diagonals of a trapezoid $ABCD$ with $AD \parallel BC$ intersect at point P . Point Q lies between the parallel lines AD and BC such that the line CD separates points P and Q , and $\angle AQD = \angle CQB$. Prove that $\angle BQP = \angle DAQ$.
4	Prove that for any positive real numbers a_i, b_i, c_i with $i = 1, 2, 3$, $(a_1^3 + b_1^3 + c_1^3 + 1)(a_2^3 + b_2^3 + c_2^3 + 1)(a_3^3 + b_3^3 + c_3^3 + 1) \ge \frac{3}{4}(a_1 + b_1 + c_1)(a_2 + b_2 + c_2)(a_3 + b_3 + c_3)$

AoPS Community

2013 Moldova Team Selection Test

1	Let $A = 201320132013$ be formed by joining 2013, 165 times. Prove that $2013^2 A$.
2	Find all pairs of real numbers (x, y) satisfying $\begin{cases} 2x^2 + xy &= 1\\ \frac{9x^2}{2(1-x)^4} &= 1 + \frac{3xy}{2(1-x)^2} \end{cases}$
3	Consider the obtuse-angled triangle $\triangle ABC$ and its side lengths a, b, c . Prove that $a^3 \cos \angle A + b^3 \cos \angle B + c^3 \cos \angle C < abc$.
4	Let $n \ge 1$ be an integer. What is the maximum number of disjoint pairs of elements of the set $\{1, 2,, n\}$ such that the sums of the different pairs are different integers not exceeding n ?
Day	4
1	Consider real numbers x, y, z such that $x, y, z > 0$. Prove that
	$(xy+yz+xz)\left(\frac{1}{x^2+y^2}+\frac{1}{x^2+z^2}+\frac{1}{y^2+z^2}\right) > \frac{5}{2}.$
2	Consider a board on 2013×2013 squares, what is the maximum number of chess knights that can be placed so that no 2 attack each other?
3	Consider the triangle $\triangle ABC$ with $AB \neq AC$. Let point O be the circumcenter of $\triangle ABC$. Let the angle bisector of $\angle BAC$ intersect BC at point D . Let E be the reflection of point D across the midpoint of the segment BC . The lines perpendicular to BC in points D, E intersect the lines AO, AD at the points X, Y respectively. Prove that the quadrilateral B, X, C, Y is cyclic.
4	p is a 4k+3 prime. Prove that there are infinite p which satisfies $p 2^ny+1, y$ is an random integer.

Act of Problem Solving is an ACS WASC Accredited School.