AoPS Community

Moldova Team Selection Test 2013

www.artofproblemsolving.com/community/c5308
by mikeshadow, lyukhson, Hypernova

Day 1

1 For any positive real numbers x, y, z, prove that $\frac{x}{y}+\frac{y}{z}+\frac{z}{x} \geq \frac{z(x+y)}{y(y+z)}+\frac{x(z+y)}{z(x+z)}+\frac{y(x+z)}{x(x+y)}$
2 We call a triangle $\triangle A B C, Q$-angled if $\tan \angle A, \tan \angle B, \tan \angle C \in \mathbb{Q}$, where $\angle A, \angle B, \angle C$ are the interior angles of the triangle $\triangle A B C . a)$ Prove that Q-angled triangles exist; b) Let triangle $\triangle A B C$ be Q-angled. Prove that for any non-negative integer n, numbers of the form $E_{n}=$ $\sin ^{n} \angle A \sin ^{n} \angle B \sin ^{n} \angle C+\cos ^{n} \angle A \cos ^{n} \angle B \cos ^{n} \angle C$ are rational.

3 Let $A B C D$ be a cyclic quadrilateral whose diagonals $A C$ and $B D$ meet at E. The extensions of the sides $A D$ and $B C$ beyond A and B meet at F. Let G be the point such that $E C G D$ is a parallelogram, and let H be the image of E under reflection in $A D$. Prove that D, H, F, G are concyclic.

4 Consider a positive real number a and a positive integer m. The sequence $\left(x_{k}\right)_{k \in \mathbb{Z}^{+}}$is defined as: $x_{1}=1, x_{2}=a, x_{n+2}=\sqrt[m+1]{x_{n+1}^{m} x_{n}}$. a) Prove that the sequence is converging. b) Find $\lim _{n \rightarrow \infty} x_{n}$.

Day 2

1 Let m be the number of ordered solutions (a, b, c, d, e) satisfying: 1) $\left.a, b, c, d, e \in \mathbb{Z}^{+} ; 2\right) \frac{1}{a}+\frac{1}{b}+$ $\frac{1}{c}+\frac{1}{d}+\frac{1}{e}=1$;
Prove that m is odd.
2 Let $a_{n}=1+n!\left(\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\ldots+\frac{1}{n!}\right)$ for any $n \in \mathbb{Z}^{+}$. Consider a_{n} points in the plane,no 3 of them collinear. The segments between any 2 of them are colored in one of n colors. Prove that among them there exist 3 points forming a monochromatic triangle.
$3 \quad$ The diagonals of a trapezoid $A B C D$ with $A D \| B C$ intersect at point P. Point Q lies between the parallel lines $A D$ and $B C$ such that the line $C D$ separates points P and Q, and $\angle A Q D=\angle C Q B$. Prove that $\angle B Q P=\angle D A Q$.

4 Prove that for any positive real numbers a_{i}, b_{i}, c_{i} with $i=1,2,3,\left(a_{1}^{3}+b_{1}^{3}+c_{1}^{3}+1\right)\left(a_{2}^{3}+b_{2}^{3}+c_{2}^{3}+\right.$ 1) $\left(a_{3}^{3}+b_{3}^{3}+c_{3}^{3}+1\right) \geq \frac{3}{4}\left(a_{1}+b_{1}+c_{1}\right)\left(a_{2}+b_{2}+c_{2}\right)\left(a_{3}+b_{3}+c_{3}\right)$

Day 3

1 Let $A=20132013 \ldots 2013$ be formed by joining 2013, 165 times. Prove that $2013^{2} \mid A$.
2 Find all pairs of real numbers (x, y) satisfying $\left\{\begin{aligned} 2 x^{2}+x y & =1 \\ \frac{9 x^{2}}{2(1-x)^{4}} & =1+\frac{3 x y}{2(1-x)^{2}}\end{aligned}\right.$
3 Consider the obtuse-angled triangle $\triangle A B C$ and its side lengths a, b, c. Prove that $a^{3} \cos \angle A+$ $b^{3} \cos \angle B+c^{3} \cos \angle C<a b c$.

4 Let $n \geq 1$ be an integer. What is the maximum number of disjoint pairs of elements of the set $\{1,2, \ldots, n\}$ such that the sums of the different pairs are different integers not exceeding n ?

Day 4

1 Consider real numbers x, y, z such that $x, y, z>0$. Prove that

$$
(x y+y z+x z)\left(\frac{1}{x^{2}+y^{2}}+\frac{1}{x^{2}+z^{2}}+\frac{1}{y^{2}+z^{2}}\right)>\frac{5}{2} .
$$

2 Consider a board on 2013×2013 squares, what is the maximum number of chess knights that can be placed so that no 2 attack each other?

3 Consider the triangle $\triangle A B C$ with $A B \neq A C$. Let point O be the circumcenter of $\triangle A B C$. Let the angle bisector of $\angle B A C$ intersect $B C$ at point D. Let E be the reflection of point D across the midpoint of the segment $B C$. The lines perpendicular to $B C$ in points D, E intersect the lines $A O, A D$ at the points X, Y respectively. Prove that the quadrilateral B, X, C, Y is cyclic.
$4 \quad p$ is a $4 \mathbf{k}+3$ prime. Prove that there are infinite p which satisfies $p \mid 2^{n} y+1 . y$ is an random integer.

