Art of Problem Solving

AoPS Community

Moldova Team Selection Test 2014

www.artofproblemsolving.com/community/c5309
by TheBottle, mikeshadow, grizadaniel

Day 1 March 3rd

1 Find all pairs of non-negative integers (x, y) such that

$$
\sqrt{x+y}-\sqrt{x}-\sqrt{y}+2=0
$$

2 Let $a, b \in \mathbb{R}_{+}$such that $a+b=1$. Find the minimum value of the following expression:

$$
E(a, b)=3 \sqrt{1+2 a^{2}}+2 \sqrt{40+9 b^{2}} .
$$

3 Let $\triangle A B C$ be an acute triangle and $A D$ the bisector of the angle $\angle B A C$ with $D \in(B C)$. Let E and F denote feet of perpendiculars from D to $A B$ and $A C$ respectively. If $B F \cap C E=K$ and $\odot A K E \cap B F=L$ prove that $D L \perp B F$.

4 Define $p(n)$ to be th product of all non-zero digits of n. For instance $p(5)=5, p(27)=14$, $p(101)=1$ and so on. Find the greatest prime divisor of the following expression:

$$
p(1)+p(2)+p(3)+\ldots+p(999) .
$$

Day 2 March 29th
1 Consider $n \geq 2$ positive numbers $0<x_{1} \leq x_{2} \leq \ldots \leq x_{n}$, such that $x_{1}+x_{2}+\ldots+x_{n}=1$. Prove that if $x_{n} \leq \frac{2}{3}$, then there exists a positive integer $1 \leq k \leq n$ such that $\frac{1}{3} \leq x_{1}+x_{2}+\ldots+x_{k}<\frac{2}{3}$.

2 Let a, b, c be positive real numbers such that $a b c=1$. Determine the minimum value of $E(a, b, c)=$ $\sum \frac{a^{3}+5}{a^{3}(b+c)}$.

3 Let $A B C D$ be a cyclic quadrilateral. The bisectors of angles $B A D$ and $B C D$ intersect in point K such that $K \in B D$. Let M be the midpoint of $B D$. A line passing through point C and parallel to $A D$ intersects $A M$ in point P. Prove that triangle $\triangle D P C$ is isosceles.

4 Consider $n \geq 2$ distinct points in the plane $A_{1}, A_{2}, \ldots, A_{n}$. Color the midpoints of the segments determined by each pair of points in red. What is the minimum number of distinct red points?

Day 3 March 30th

1 Prove that there do not exist 4 points in the plane such that the distances between any pair of them is an odd integer.

2 Find all functions $f: R \rightarrow R$, which satisfy the equality for any $x, y \in R: f(x f(y)+y)+f(x y+$ $x)=f(x+y)+2 x y$,

3 Let $\triangle A B C$ be a triangle with $\angle A$-acute. Let P be a point inside $\triangle A B C$ such that $\angle B A P=$ $\angle A C P$ and $\angle C A P=\angle A B P$. Let M, N be the centers of the incircle of $\triangle A B P$ and $\triangle A C P$, and R the radius of the circumscribed circle of $\triangle A M N$. Prove that $\frac{1}{R}=\frac{1}{A B}+\frac{1}{A C}+\frac{1}{A P}$.

4 On a circle $n \geq 1$ real numbers are written, their sum is $n-1$. Prove that one can denote these numbers as $x_{1}, x_{2}, \ldots, x_{n}$ consecutively, starting from a number and moving clockwise, such that for any $k(1 \leq k \leq n) x_{1}+x_{2}+\ldots+x_{k} \geq k-1$.

