AoPS Community

www.artofproblemsolving.com/community/c532577 by laegolas, evansmiley, AndrewTom, Fermat -Euler

- Paper 1

1 Three points X, Y and Z are given that are, respectively, the circumcenter of a triangle $A B C$, the mid-point of $B C$, and the foot of the altitude from B on $A C$. Show how to reconstruct the triangle $A B C$.

2 Problem:
Find all polynomials satisfying the equation $f\left(x^{2}\right)=(f(x))^{2}$
for all real numbers x.
I'm not exactly sure where to start though it doesn't look too difficult. Thanks!
3 Three operations f, g and h are defined on subsets of the natural numbers \mathbb{N} as follows: $f(n)=$ $10 n$, if n is a positive integer; $g(n)=10 n+4$, if n is a positive integer; $h(n)=\frac{n}{2}$, if n is an even positive integer.
Prove that, starting from 4, every natural number can be constructed by performing a finite number of operations f, g and h in some order.
[For example: $35=h(f(h(g(h(h(4))))))$.]
4 Eight politicians stranded on a desert island on January 1st, 1991, decided to establish a parliament.
They decided on the following rules of attendance:
(a) There should always be at least one person present on each day.
(b) On no two days should the same subset attend.
(c) The members present on day N should include for each $K<N$, ($K \geq 1$) at least one member who was present on day K.

For how many days can the parliament sit before one of the rules is broken?
5 Find all polynomials
$f(x)=x^{n}+a_{1} x^{n-1}+\cdots+a_{n}$
with the following properties
(a) all the coefficients $a_{1}, a_{2}, \ldots, a_{n}$ belong to the set $\{-1,1\}$; and
(b) all the roots of the equation $f(x)=0$ are real.

- Paper 2

1 Problem. The sum of two consecutive squares can be a square; for instance $3^{2}+4^{2}=5^{2}$.
(a) Prove that the sum of m consecutive squares cannot be a square for $m \in\{3,4,5,6\}$.
(b) Find an example of eleven consecutive squares whose sum is a square.

Can anyone help me with this?
Thanks.
2 Let

$$
a_{n}=\frac{n^{2}+1}{\sqrt{n^{4}+4}}, \quad n=1,2,3, \ldots
$$

and let b_{n} be the product of $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$. Prove that

$$
\frac{b_{n}}{\sqrt{2}}=\frac{\sqrt{n^{2}+1}}{\sqrt{n^{2}+2 n+2}},
$$

and deduce that

$$
\frac{1}{n^{3}+1}<\frac{b_{n}}{\sqrt{2}}-\frac{n}{n+1}<\frac{1}{n^{3}}
$$

for all positive integers n.
3 Let $A B C$ be a triangle, and let the angle bisectors of its angles $C A B$ and $A B C$ meet the sides $B C$ and $C A$ at the points D and F, respectively. The lines $A D$ and $B F$ meet the line through the point C parallel to $A B$ at the points E and G respectively, and we have $F G=D E$. Prove that $C A=C B$.

Original formulation:
Let $A B C$ be a triangle and L the line through C parallel to the side $A B$. Let the internal bisector of the angle at A meet the side $B C$ at D and the line L at E and let the internal bisector of the angle at B meet the side $A C$ at F and the line L at G. If $G F=D E$, prove that $A C=B C$.
$4 \quad$ Let \mathbb{P} be the set of positive rational numbers and let $f: \mathbb{P} \rightarrow \mathbb{P}$ be such that

$$
f(x)+f\left(\frac{1}{x}\right)=1
$$

and

$$
f(2 x)=2 f(f(x))
$$

for all $x \in \mathbb{P}$.
Find, with proof, an explicit expression for $f(x)$ for all $x \in \mathbb{P}$.
$5 \quad$ Let \mathbb{Q} denote the set of rational numbers. A nonempty subset S of \mathbb{Q} has the following properties:
(a) 0 is not in S;
(b) for each s_{1}, s_{2} in S, the rational number s_{1} / s_{2} is in S;
(c) there exists a nonzero number $q \in \mathbb{Q} \backslash S$ that has the property that every nonzero number in $\mathbb{Q} \backslash S$ is of the form $q s$ for some s in S.
Prove that if x belongs to S, then there exists elements y, z in S such that $x=y+z$.

