

AoPS Community

_

1991 Irish Math Olympiad

www.artofproblemsolving.com/community/c532577

by laegolas, evansmiley, AndrewTom, Fermat -Euler

-	Paper 1
1	Three points X, Y and Z are given that are, respectively, the circumcenter of a triangle ABC , the mid-point of BC , and the foot of the altitude from B on AC . Show how to reconstruct the triangle ABC .
2	Problem: Find all polynomials satisfying the equation $f(x^2) = (f(x))^2$ for all real numbers x. I'm not exactly sure where to start though it doesn't look too difficult. Thanks!
3	Three operations f, g and h are defined on subsets of the natural numbers \mathbb{N} as follows: $f(n) = 10n$, if n is a positive integer; $g(n) = 10n + 4$, if n is a positive integer; $h(n) = \frac{n}{2}$, if n is an <i>even</i> positive integer. Prove that, starting from 4, every natural number can be constructed by performing a finite number of operations f, g and h in some order.
	[For example: $35 = h(f(h(g(h(h(4)))))))$.]
4	Eight politicians stranded on a desert island on January 1st, 1991, decided to establish a par- liament. They decided on the following rules of attendance:
	(a) There should always be at least one person present on each day.
	(b) On no two days should the same subset attend.
	(c) The members present on day N should include for each $K < N$, $(K \ge 1)$ at least one member who was present on day K .
	For how many days can the parliament sit before one of the rules is broken?
5	Find all polynomials
	$f(x) = x^n + a_1 x^{n-1} + \dots + a_n$
	with the following properties
	(a) all the coefficients $a_1, a_2,, a_n$ belong to the set $\{-1, 1\}$; and (b) all the roots of the equation $f(x) = 0$ are real.

- Paper 2
- **1** Problem. The sum of two consecutive squares can be a square; for instance $3^2 + 4^2 = 5^2$.

(a) Prove that the sum of m consecutive squares cannot be a square for $m \in \{3, 4, 5, 6\}$. (b) Find an example of eleven consecutive squares whose sum is a square.

Can anyone help me with this? Thanks.

2 Let

$$a_n = \frac{n^2 + 1}{\sqrt{n^4 + 4}}, \quad n = 1, 2, 3, \dots$$

and let b_n be the product of $a_1, a_2, a_3, \ldots, a_n$. Prove that

$$\frac{b_n}{\sqrt{2}} = \frac{\sqrt{n^2 + 1}}{\sqrt{n^2 + 2n + 2}},$$

and deduce that

$$\frac{1}{n^3 + 1} < \frac{b_n}{\sqrt{2}} - \frac{n}{n+1} < \frac{1}{n^3}$$

for all positive integers n.

3 Let ABC be a triangle, and let the angle bisectors of its angles CAB and ABC meet the sides BC and CA at the points D and F, respectively. The lines AD and BF meet the line through the point C parallel to AB at the points E and G respectively, and we have FG = DE. Prove that CA = CB.

Original formulation:

Let ABC be a triangle and L the line through C parallel to the side AB. Let the internal bisector of the angle at A meet the side BC at D and the line L at E and let the internal bisector of the angle at B meet the side AC at F and the line L at G. If GF = DE, prove that AC = BC.

4 Let \mathbb{P} be the set of positive rational numbers and let $f : \mathbb{P} \to \mathbb{P}$ be such that

$$f(x) + f\left(\frac{1}{x}\right) = 1$$

and

$$f(2x) = 2f(f(x))$$

for all $x \in \mathbb{P}$. Find, with proof, an explicit expression for f(x) for all $x \in \mathbb{P}$.

AoPS Community

- **5** Let \mathbb{Q} denote the set of rational numbers. A nonempty subset *S* of \mathbb{Q} has the following properties:
 - (a) 0 is not in S;
 - (b) for each s_1, s_2 in *S*, the rational number s_1/s_2 is in *S*;

(c) there exists a nonzero number $q \in \mathbb{Q} \setminus S$ that has the property that every nonzero number in $\mathbb{Q} \setminus S$ is of the form qs for some s in S.

Prove that if x belongs to S, then there exists elements y, z in S such that x = y + z.

Act of Problem Solving is an ACS WASC Accredited School.