AoPS Community

Nordic 2015

www.artofproblemsolving.com/community/c532722
by parmenides51, rightways

1 Let $A B C$ be a triangle and Γ the circle with diameter $A B$. The bisectors of $\angle B A C$ and $\angle A B C$ intersect Γ (also) at D and E, respectively. The incircle of $A B C$ meets $B C$ and $A C$ at F and G, respectively. Prove that D, E, F and G are collinear.

2 Find the primes p, q, r, given that one of the numbers $p q r$ and $p+q+r$ is 101 times the other.
3 Let $n>1$ and $p(x)=x^{n}+a_{n-1} x^{n-1}+\ldots+a_{0}$ be a polynomial with n real roots (counted with multiplicity). Let the polynomial q be defined by

$$
q(x)=\prod_{j=1}^{2015} p(x+j)
$$

We know that $p(2015)=2015$. Prove that q has at least 1970 different roots r_{1}, \ldots, r_{1970} such that $\left|r_{j}\right|<2015$ for all $j=1, \ldots, 1970$.

4 An encyclopedia consists of 2000 numbered volumes. The volumes are stacked in order with number 1 on top and 2000 in the bottom. One may perform two operations with the stack:
(i) For n even, one may take the top n volumes and put them in the bottom of the stack without changing the order.
(ii) For n odd, one may take the top n volumes, turn the order around and put them on top of the stack again.
How many different permutations of the volumes can be obtained by using these two operations repeatedly?

