AoPS Community

Nordic 2013

www.artofproblemsolving.com/community/c532728
by parmenides51

1 Let $\left(a_{n}\right)_{n \geq 1}$ be a sequence with $a_{1}=1$ and $a_{n+1}=\left\lfloor a_{n}+\sqrt{a_{n}}+\frac{1}{2}\right\rfloor$ for all $n \geq 1$, where $\lfloor x\rfloor$ denotes the greatest integer less than or equal to x. Find all $n \leq 2013$ such that a_{n} is a perfect square

2 In a football tournament there are n teams, with $n \geq 4$, and each pair of teams meets exactly once. Suppose that, at the end of the tournament, the final scores form an arithmetic sequence where each team scores 1 more point than the following team on the scoreboard. Determine the maximum possible score of the lowest scoring team, assuming usual scoring for football games (where the winner of a game gets 3 points, the loser 0 points, and if there is a tie both teams get 1 point).

3 Define a sequence $\left(n_{k}\right)_{k \geq 0}$ by $n_{0}=n_{1}=1$, and $n_{2 k}=n_{k}+n_{k-1}$ and $n_{2 k+1}=n_{k}$ for $k \geq 1$. Let further $q_{k}=n_{k} / n_{k-1}$ for each $k \geq 1$. Show that every positive rational number is present exactly once in the sequence $\left(q_{k}\right)_{k \geq 1}$

4 Let $A B C$ be an acute angled triangle, and H a point in its interior. Let the reflections of H through the sides $A B$ and $A C$ be called H_{c} and H_{b}, respectively, and let the reflections of H through the midpoints of these same sidesbe called H_{c}^{\prime} and H_{b}^{\prime}, respectively. Show that the four points $H_{b}, H_{b}^{\prime}, H_{c}$, and H_{c}^{\prime} are concyclic if and only if at least two of them coincide or H lies on the altitude from A in triangle $A B C$.

