AoPS Community

Nordic 2001

www.artofproblemsolving.com/community/c532735
by parmenides51

1 Let A be a finite collection of squares in the coordinate plane such that the vertices of all squares that belong to A are $(m, n),(m+1, n),(m, n+1)$, and $(m+1, n+1)$ for some integers m and n. Show that there exists a subcollection B of A such that B contains at least 25% of the squares in A, but no two of the squares in B have a common vertex.

2 Let f be a bounded real function defined for all real numbers and satisfying for all real numbers x the condition $f\left(x+\frac{1}{3}\right)+f\left(x+\frac{1}{2}\right)=f(x)+f\left(x+\frac{5}{6}\right)$. Show that f is periodic.

3 Determine the number of real roots of the equation $x^{8}-x^{7}+2 x^{6}-2 x^{5}+3 x^{4}-3 x^{3}+4 x^{2}-4 x+\frac{5}{2}=0$

4 Let $A B C D E F$ be a convex hexagon, in which each of the diagonals $A D, B E$, and $C F$ divides the hexagon into two quadrilaterals of equal area. Show that $A D, B E$, and $C F$ are concurrent.

