AoPS Community

www.artofproblemsolving.com/community/c533014
by laegolas, parmenides51, Hydrogen-Helium, AndrewTom

- \quad Paper 1

1 Describe in geometric terms the set of points (x, y) in the plane such that x and y satisfy the condition $t^{2}+y t+x \geq 0$ for all t with $-1 \leq t \leq 1$.

2 How many ordered triples (x, y, z) of real numbers satisfy the system of equations

$$
\begin{gathered}
x^{2}+y^{2}+z^{2}=9, \\
x^{4}+y^{4}+z^{4}=33, \\
x y z=-4 ?
\end{gathered}
$$

3 Let A be a nonempty set with n elements. Find the number of ways of choosing a pair of subsets (B, C) of A such that B is a nonempty subset of C.

4 In a triangle $A B C$, the points A^{\prime}, B^{\prime} and C^{\prime} on the sides opposite A, B and C, respectively, are such that the lines $A A^{\prime}, B B^{\prime}$ and $C C^{\prime}$ are concurrent. Prove that the diameter of the circumscribed circle of the triangle $A B C$ equals the product $\left|A B^{\prime}\right| \cdot\left|B C^{\prime}\right| \cdot\left|C A^{\prime}\right|$ divided by the area of the triangle $A^{\prime} B^{\prime} C^{\prime}$.

5 Let $A B C$ be a triangle such that the coordinates of the points A and B are rational numbers. Prove that the coordinates of C are rational if, and only if, $\tan A, \tan B$, and $\tan C$, when defined, are all rational numbers.

- \quad Paper 2

1 Let $n>2$ be an integer and let $m=\sum k^{3}$, where the sum is taken over all integers k with $1 \leq k<n$ that are relatively prime to n. Prove that n divides m.

2 If a_{1} is a positive integer, form the sequence $a_{1}, a_{2}, a_{3}, \ldots$ by letting a_{2} be the product of the digits of a_{1}, etc.. If a_{k} consists of a single digit, for some $k \geq 1, a_{k}$ is called a digital root of a_{1}. It is easy to check that every positive integer has a unique root. (For example, if $a_{1}=24378$, then $a_{2}=1344, a_{3}=48, a_{4}=32, a_{5}=6$, and thus 6 is the digital root of 24378 .) Prove that the digital root of a positive integer n equals 1 if , and only if, all the digits of n equal 1 .

3 Let a, b, c and d be real numbers with $a \neq 0$. Prove that if all the roots of the cubic equation $a z^{3}+b z^{2}+c z+d=0$
lie to the left of the imaginary axis in the complex plane, then $a b>0, b c-a d>0, a d>0$.

4 A convex pentagon has the property that each of its diagonals cuts off a triangle of unit area. Find the area of the pentagon.

5 If, for $k=1,2, \ldots, n$, a_{k} and b_{k} are positive real numbers, prove that

$$
\sqrt[n]{a_{1} a_{2} \cdots a_{n}}+\sqrt[n]{b_{1} b_{2} \cdots b_{n}} \leq \sqrt[n]{\left(a_{1}+b_{1}\right)\left(a_{2}+b_{2}\right) \cdots\left(a_{n}+b_{n}\right)}
$$

and that equality holds if, and only if,

$$
\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}=\cdots=\frac{a_{n}}{b_{n}} .
$$

