AoPS Community

Korea National Olympiad 2004

www.artofproblemsolving.com/community/c5338
by lightrhee

- \quad September 7th

1 For arbitrary real number x, the function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies $f(f(x))-x^{2}+x+3=0$. Show that the function f does not exist.
$2 x$ and y are positive and relatively prime and z is an integer. They satisfy $(5 z-4 x)(5 z-4 y)=$ $25 x y$. Show that at least one of $10 z+x+y$ or quotient of this number divided by 3 is a square number (i.e. prove that $10 z+x+y$ or integer part of $\frac{10 z+x+y}{3}$ is a square number).

3 Positive real numbers, $a_{1}, . ., a_{6}$ satisfy $a_{1}^{2}+. .+a_{6}^{2}=2$. Think six squares that has side length of $a_{i}(i=1,2, \ldots, 6)$. Show that the squares can be packed inside a square of length 2 , without overlapping.
$4 \quad$ Let k and N be positive real numbers which satisfy $k \leq N$. For $1 \leq i \leq k$, there are subsets A_{i} of $\{1,2,3, \ldots, N\}$ that satisfy the following property.
For arbitrary subset of $\left\{i_{1}, i_{2}, \ldots, i_{s}\right\} \subset\{1,2,3, \ldots, k\}, A_{i_{1}} \triangle A_{i_{2}} \triangle \ldots \triangle A_{i_{s}}$ is not an empty set.
Show that a subset $\left\{j_{1}, j_{2}, . ., j_{t}\right\} \subset\{1,2, \ldots, k\}$ exist that satisfies $n\left(A_{j_{1}} \triangle A_{j_{2}} \triangle \cdots \triangle A_{j_{t}}\right) \geq k$. $(A \triangle B=A \cup B-A \cap B)$
$5 A, B, C$, and D are the four different points on the circle O in the order. Let the centre of the scribed circle of triangle $A B C$, which is tangent to $B C$, be O_{1}. Let the centre of the scribed circle of triangle $A C D$, which is tangent to $C D$, be O_{2}.
(1) Show that the circumcentre of triangle $A B O_{1}$ is on the circle O.
(2) Show that the circumcircle of triangle $\mathrm{CO}_{1} \mathrm{O}_{2}$ always pass through a fixed point on the circle O, when C is moving along arc $B D$.

