

AoPS Community

2004 Korea National Olympiad

Korea National Olympiad 2004

www.artofproblemsolving.com/community/c5338 by lightrhee

-	September 7th
1	For arbitrary real number x , the function $f : \mathbb{R} \to \mathbb{R}$ satisfies $f(f(x)) - x^2 + x + 3 = 0$. Show that the function f does not exist.
2	x and y are positive and relatively prime and z is an integer. They satisfy $(5z - 4x)(5z - 4y) = 25xy$. Show that at least one of $10z + x + y$ or quotient of this number divided by 3 is a square number (i.e. prove that $10z + x + y$ or integer part of $\frac{10z + x + y}{3}$ is a square number).
3	Positive real numbers, $a_1,, a_6$ satisfy $a_1^2 + + a_6^2 = 2$. Think six squares that has side length of a_i ($i = 1, 2,, 6$). Show that the squares can be packed inside a square of length 2, without overlapping.
4	Let k and N be positive real numbers which satisfy $k \le N$. For $1 \le i \le k$, there are subsets A_i of $\{1, 2, 3,, N\}$ that satisfy the following property.
	For arbitrary subset of $\{i_1, i_2, \dots, i_s\} \subset \{1, 2, 3, \dots, k\}$, $A_{i_1} \triangle A_{i_2} \triangle \dots \triangle A_{i_s}$ is not an empty set.
	Show that a subset $\{j_1, j_2,, j_t\} \subset \{1, 2,, k\}$ exist that satisfies $n(A_{j_1} \triangle A_{j_2} \triangle \cdots \triangle A_{j_t}) \ge k$. ($A \triangle B = A \cup B - A \cap B$)
5	A, B, C , and D are the four different points on the circle O in the order. Let the centre of the scribed circle of triangle ABC , which is tangent to BC , be O_1 . Let the centre of the scribed circle of triangle ACD , which is tangent to CD , be O_2 .
	(1) Show that the circumcentre of triangle ABO_1 is on the circle O .
	(2) Show that the circumcircle of triangle CO_1O_2 always pass through a fixed point on the circle O , when C is moving along arc BD .

AoPS Online AoPS Academy AoPS & Ao