

AoPS Community

www.artofproblemsolving.com/community/c534049 by laegolas, moldovan, sqing

-	Paper 1
1	The real numbers $lpha,eta$ satisfy the equations
	$\alpha^3 - 3\alpha^2 + 5\alpha - 17 = 0$
	$\beta^3 - 3\beta^2 + 5\beta + 11 = 0$
	Find $\alpha + \beta$.
2	A positive integer n is called <i>good</i> if it can be uniquely written simultaneously as $a_1+a_2++a_k$ and as $a_1a_2a_k$, where a_i are positive integers and $k \ge 2$. (For example, 10 is good because $10 = 5 + 2 + 1 + 1 + 1 = 5 \cdot 2 \cdot 1 \cdot 1 \cdot 1$ is a unique expression of this form). Find, in terms of prime numbers, all good natural numbers.
3	A line <i>l</i> is tangent to a circle <i>S</i> at <i>A</i> . For any points <i>B</i> , <i>C</i> on <i>l</i> on opposite sides of <i>A</i> , let the other tangents from <i>B</i> and <i>C</i> to <i>S</i> intersect at a point <i>P</i> . If <i>B</i> , <i>C</i> vary on <i>l</i> so that the product $AB \cdot AC$ is constant, find the locus of <i>P</i> .
4	Let $f(x) = x^n + a_{n-1}x^{n-1} + + a_0$ $(n \ge 1)$ be a polynomial with real coefficients such that $ f(0) = f(1)$ and each root α of f is real and lies in the interval $[0, 1]$. Prove that the product of the roots does not exceed $\frac{1}{2^n}$.
5	For a complex number $z = x + iy$ we denote by $P(z)$ the corresponding point (x, y) in the plane. Suppose $z_1, z_2, z_3, z_4, z_5, \alpha$ are nonzero complex numbers such that: (i) $P(z_1),, P(z_5)$ are vertices of a complex pentagon Q containing the origin O in its interior, and (ii) $P(\alpha z_1),, P(\alpha z_5)$ are all inside Q . If $\alpha = p + iq$ $(p, q \in \mathbb{R})$, prove that $p^2 + q^2 \le 1$ and $p + q \tan \frac{\pi}{5} \le 1$.
-	Paper 2
1	Show that among any five points $P_1,, P_5$ with integer coordinates in the plane, there exists at least one pair (P_i, P_j) , with $i \neq j$ such that the segment P_iP_j contains a point Q with integer coordinates other than P_i, P_j .
2	Let a_i, b_i $(i = 1, 2,, n)$ be real numbers such that the a_i are distinct, and suppose that there

2 Let a_i, b_i (i = 1, 2, ..., n) be real numbers such that the a_i are distinct, and suppose that there is a real number α such that the product $(a_i + b_1)(a_i + b_2)...(a_i + b_n)$ is equal to α for each *i*.

AoPS Community

1993 Irish Math Olympiad

Prove that there is a real number β such that $(a_1 + b_j)(a_2 + b_j)...(a_n + b_j)$ is equal to β for each j.

3 If
$$1 \le r \le n$$
 are integers, prove the identity:

$$\sum_{d=1}^{\infty} {n-r+1 \choose d} {r-1 \choose d-1} = {n \choose r}.$$
4 Let x be a real number with $0 < x < \pi$. Prove that, for all natural number n ,

$$sinx + \frac{sin3x}{3} + \frac{sin5x}{5} + \dots + \frac{sin(2n-1)x}{2n-1} > 0.$$

5 (a) The rectangle PQRS with PQ = l and QR = m $(l, m \in \mathbb{N})$ is divided into lm unit squares. Prove that the diagonal PR intersects exactly l + m - d of these squares, where d = (l, m). (b) A box with edge lengths $l, m, n \in \mathbb{N}$ is divided into lmn unit cubes. How many of the cubes does a main diagonal of the box intersect?

AoPS Online 🔯 AoPS Academy 🗿 AoPS & Cast

Art of Problem Solving is an ACS WASC Accredited School.