AoPS Community

www.artofproblemsolving.com/community/c534049
by laegolas, moldovan, sqing

- \quad Paper 1

1 The real numbers α, β satisfy the equations

$$
\begin{aligned}
& \alpha^{3}-3 \alpha^{2}+5 \alpha-17=0 \\
& \beta^{3}-3 \beta^{2}+5 \beta+11=0
\end{aligned}
$$

Find $\alpha+\beta$.
2 A positive integer n is called good if it can be uniquely written simultaneously as $a_{1}+a_{2}+\ldots+a_{k}$ and as $a_{1} a_{2} \ldots a_{k}$, where a_{i} are positive integers and $k \geq 2$. (For example, 10 is good because $10=5+2+1+1+1=5 \cdot 2 \cdot 1 \cdot 1 \cdot 1$ is a unique expression of this form). Find, in terms of prime numbers, all good natural numbers.
$3 \quad$ A line l is tangent to a circle S at A. For any points B, C on l on opposite sides of A, let the other tangents from B and C to S intersect at a point P. If B, C vary on l so that the product $A B \cdot A C$ is constant, find the locus of P.

4 Let $f(x)=x^{n}+a_{n-1} x^{n-1}+\ldots+a_{0}(n \geq 1)$ be a polynomial with real coefficients such that $|f(0)|=f(1)$ and each root α of f is real and lies in the interval [0,1$]$. Prove that the product of the roots does not exceed $\frac{1}{2^{n}}$.

5 For a complex number $z=x+i y$ we denote by $P(z)$ the corresponding point (x, y) in the plane. Suppose $z_{1}, z_{2}, z_{3}, z_{4}, z_{5}, \alpha$ are nonzero complex numbers such that: $(i) P\left(z_{1}\right), \ldots, P\left(z_{5}\right)$ are vertices of a complex pentagon Q containing the origin O in its interior, and (ii) $P\left(\alpha z_{1}\right), \ldots, P\left(\alpha z_{5}\right)$ are all inside Q.
If $\alpha=p+i q(p, q \in \mathbb{R})$, prove that $p^{2}+q^{2} \leq 1$ and $p+q \tan \frac{\pi}{5} \leq 1$.

- Paper 2

1 Show that among any five points P_{1}, \ldots, P_{5} with integer coordinates in the plane, there exists at least one pair $\left(P_{i}, P_{j}\right)$, with $i \neq j$ such that the segment $P_{i} P_{j}$ contains a point Q with integer coordinates other than P_{i}, P_{j}.

2 Let $a_{i}, b_{i}(i=1,2, \ldots, n)$ be real numbers such that the a_{i} are distinct, and suppose that there is a real number α such that the product $\left(a_{i}+b_{1}\right)\left(a_{i}+b_{2}\right) \ldots\left(a_{i}+b_{n}\right)$ is equal to α for each i.

Prove that there is a real number β such that $\left(a_{1}+b_{j}\right)\left(a_{2}+b_{j}\right) \ldots\left(a_{n}+b_{j}\right)$ is equal to β for each j.

3 If $1 \leq r \leq n$ are integers, prove the identity:
$\sum_{d=1}^{\infty}\binom{n-r+1}{d}\binom{r-1}{d-1}=\binom{n}{r}$.
4 Let x be a real number with $0<x<\pi$. Prove that, for all natural number n,

$$
\sin x+\frac{\sin 3 x}{3}+\frac{\sin 5 x}{5}+\cdots+\frac{\sin (2 n-1) x}{2 n-1}>0 .
$$

$5 \quad(a)$ The rectangle $P Q R S$ with $P Q=l$ and $Q R=m(l, m \in \mathbb{N})$ is divided into $l m$ unit squares. Prove that the diagonal $P R$ intersects exactly $l+m-d$ of these squares, where $d=(l, m)$. (b) A box with edge lengths $l, m, n \in \mathbb{N}$ is divided into $l m n$ unit cubes. How many of the cubes does a main diagonal of the box intersect?

