AoPS Community

Korea National Olympiad 2009

www.artofproblemsolving.com/community/c5341
by Ikeronalio

Day 1

1 Let I, O be the incenter and the circumcenter of triangle $A B C$, and D, E, F be the circumcenters of triangle $B I C, C I A, A I B$. Let P, Q, R be the midpoints of segments $D I, E I, F I$. Prove that the circumcenter of triangle $P Q R, M$, is the midpoint of segment $I O$.

2 Let a, b, c be positive real numbers. Prove that

$$
\frac{a^{3}}{c\left(a^{2}+b c\right)}+\frac{b^{3}}{a\left(b^{2}+c a\right)}+\frac{c^{3}}{b\left(c^{2}+a b\right)} \geq \frac{3}{2} .
$$

3 Let n be a positive integer. Suppose that the diophantine equation

$$
z^{n}=8 x^{2009}+23 y^{2009}
$$

uniquely has an integer solution $(x, y, z)=(0,0,0)$. Find the possible minimum value of n.
4 There are $n(\geq 3)$ students in a class. Some students are friends each other, and friendship is always mutual. There are $s(\geq 1)$ couples of two students who are friends, and $t(\geq 1)$ triples of three students who are each friends. For two students x, y define $d(x, y)$ be the number of students who are both friends with x and y. Prove that there exist three students u, v, w who are each friends and satisfying

$$
d(u, v)+d(v, w)+d(w, u) \geq \frac{9 t}{s}
$$

Day 2

1 Let $A=\{1,2,3, \cdots, 12\}$. Find the number of one-to-one function $f: A \rightarrow A$ satisfying following condition: for all $i \in A, f(i)-i$ is not a multiple of 3 .

2 Let $A B C$ be a triangle and $P, Q(\neq A, B, C)$ are the points lying on segments $B C, C A$. Let I, J, K be the incenters of triangle $A B P, A P Q, C P Q$. Prove that $P I J K$ is a convex quadrilateral.
$3 \quad$ For all positive integer $n \geq 2$, prove that $2^{n}-1$ can't be a divisor of $3^{n}-1$.

4 For a positive integer n, define a function $f_{n}(x)$ at an interval $[0, n+1]$ as

$$
f_{n}(x)=\left(\sum_{i=1}^{n}|x-i|\right)^{2}-\sum_{i=1}^{n}(x-i)^{2} .
$$

Let a_{n} be the minimum value of $f_{n}(x)$. Find the value of

$$
\sum_{n=1}^{11}(-1)^{n+1} a_{n}
$$

