Art of Problem Solving

AoPS Community

Korea National Olympiad 2010

www.artofproblemsolving.com/community/c5342
by Ikeronalio

Day 1

1 Prove that $7^{2^{20}}+7^{2^{19}}+1$ has at least 21 distinct prime divisors.
2 Let a, b, c be positive real numbers such that $a b+b c+c a=1$. Prove that

$$
\sqrt{a^{2}+b^{2}+\frac{1}{c^{2}}}+\sqrt{b^{2}+c^{2}+\frac{1}{a^{2}}}+\sqrt{c^{2}+a^{2}+\frac{1}{b^{2}}} \geq \sqrt{33}
$$

3 Let I be the incenter of triangle $A B C$. The incircle touches $B C, C A, A B$ at points P, Q, R. A circle passing through B, C is tangent to the circle I at point X, a circle passing through C, A is tangent to the circle I at point Y, and a circle passing through A, B is tangent to the circle I at point Z, respectively. Prove that three lines $P X, Q Y, R Z$ are concurrent.

4 There are $n(\geq 4)$ people and some people shaked hands each other. Two people can shake hands at most 1 time. For arbitrary four people A, B, C, D such that $(A, B),(B, C),(C, D)$ shaked hands, then one of $(A, C),(A, D),(B, D)$ shaked hand each other. Prove the following statements.
(a) Prove that n people can be divided into two groups, $X, Y(\neq \emptyset)$, such that for all (x, y) where $x \in X$ and $y \in Y, x$ and y shaked hands or x and y didn't shake hands.
(b) There exist two people A, B such that the set of people who are not A and B that shaked hands with A is same wiith the set of people who are not A and B that shaked hands with B.

Day 2

$1 \quad x, y, z$ are positive real numbers such that $x+y+z=1$. Prove that

$$
\sqrt{\frac{x}{1-x}}+\sqrt{\frac{y}{1-y}}+\sqrt{\frac{z}{1-z}}>2
$$

2 Let $A B C D$ be a cyclic convex quadrilateral. Let E be the intersection of lines $A B, C D . P$ is the intersection of line passing B and perpendicular to $A C$, and line passing C and perpendicular to $B D . Q$ is the intersection of line passing D and perpendicular to $A C$, and line passing A and perpendicular to $B D$. Prove that three points E, P, Q are collinear.

3 There are 2000 people, and some of them have called each other. Two people can call each other at most 1 time. For any two groups of three people A and B which $A \cap B=\emptyset$, there exist one person from each of A and B that haven't called each other. Prove that the number of two people called each other is less than 201000.

4 There are 2010 people sitting around a round table. First, we give one person x a candy. Next, we give candies to 1 st person, $1+2$ th person, $1+2+3$ th person, \cdots, and $1+2+\cdots+2009$ th person clockwise from x. Find the number of people who get at least one candy.

