AoPS Community

Korea National Olympiad 2011

www.artofproblemsolving.com/community/c5343
by syk0526

- \quad Test 1

1 Two circles O, O^{\prime} having same radius meet at two points, $A, B(A \neq B)$. Point P, Q are each on circle O and $O^{\prime}(P \neq A, B Q \neq A, B)$. Select the point R such that $P A Q R$ is a parallelogram. Assume that B, R, P, Q is cyclic. Now prove that $P Q=O O^{\prime}$.

2 Let x, y be positive integers such that $\operatorname{gcd}(x, y)=1$ and $x+3 y^{2}$ is a perfect square. Prove that $x^{2}+9 y^{4}$ can't be a perfect square.

3 Let a, b, c, d real numbers such that $a+b+c+d=19$ and $a^{2}+b^{2}+c^{2}+d^{2}=91$. Find the maximum value of

$$
\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}
$$

4 Let k, n be positive integers. There are $k n$ points $P_{1}, P_{2}, \cdots, P_{k n}$ on a circle. We can color each points with one of color $c_{1}, c_{2}, \cdots, c_{k}$. In how many ways we can color the points satisfying the following conditions?
(a) Each color is used n times.
(b) $\forall i \neq j$, if P_{a} and P_{b} is colored with color c_{i}, and P_{c} and P_{d} is colored with color c_{j}, then the segment $P_{a} P_{b}$ and segment $P_{c} P_{d}$ doesn't meet together.

- \quad Test 2

1 Find the number of positive integer $n<3^{8}$ satisfying the following condition.
"The number of positive integer $k\left(1 \leq k \leq \frac{n}{3}\right)$ such that $\frac{n!}{(n-3 k)!\cdot k!3^{k+1}}$ is not a integer" is 216 .
2 Let $A B C$ be a triangle and its incircle meets $B C, A C, A B$ at D, E and F respectively. Let point P on the incircle and inside $\triangle A E F$. Let $X=P B \cap D F, Y=P C \cap D E, Q=E X \cap F Y$. Prove that the points A and Q lies on $D P$ simultaneously or located opposite sides from $D P$.

3 There are n students each having r positive integers. Their $n r$ positive integers are all different. Prove that we can divide the students into k classes satisfying the following conditions.
(a) $k \leq 4 r$
(b) If a student A has the number m, then the student B in the same class can't have a number l such that

$$
(m-1)!<l<(m+1)!+1
$$

4 Let $x_{1}, x_{2}, \cdots, x_{25}$ real numbers such that $0 \leq x_{i} \leq i(i=1,2, \cdots, 25)$. Find the maximum value of

$$
x_{1}^{3}+x_{2}^{3}+\cdots+x_{25}^{3}-\left(x_{1} x_{2} x_{3}+x_{2} x_{3} x_{4}+\cdots x_{25} x_{1} x_{2}\right)
$$

