

## **AoPS Community**

\_

## Korea National Olympiad 2011

www.artofproblemsolving.com/community/c5343 by syk0526

| - | Test 1                                                                                                                                                                                                                                                                                                                           |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Two circles $O, O'$ having same radius meet at two points, $A, B(A \neq B)$ . Point $P, Q$ are each on circle $O$ and $O'$ $(P \neq A, B Q \neq A, B)$ . Select the point $R$ such that $PAQR$ is a parallelogram. Assume that $B, R, P, Q$ is cyclic. Now prove that $PQ = OO'$ .                                               |
| 2 | Let $x, y$ be positive integers such that $gcd(x, y) = 1$ and $x + 3y^2$ is a perfect square. Prove that $x^2 + 9y^4$ can't be a perfect square.                                                                                                                                                                                 |
| 3 | Let $a, b, c, d$ real numbers such that $a + b + c + d = 19$ and $a^2 + b^2 + c^2 + d^2 = 91$ . Find the maximum value of<br>$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}$                                                                                                                                             |
| 4 | Let $k, n$ be positive integers. There are $kn$ points $P_1, P_2, \dots, P_{kn}$ on a circle. We can color each points with one of color $c_1, c_2, \dots, c_k$ . In how many ways we can color the points satisfying the following conditions?                                                                                  |
|   | (a) Each color is used $n$ times.                                                                                                                                                                                                                                                                                                |
|   | (b) $\forall i \neq j$ , if $P_a$ and $P_b$ is colored with color $c_i$ , and $P_c$ and $P_d$ is colored with color $c_j$ , then the segment $P_a P_b$ and segment $P_c P_d$ doesn't meet together.                                                                                                                              |
| - | Test 2                                                                                                                                                                                                                                                                                                                           |
| 1 | Find the number of positive integer $n < 3^8$ satisfying the following condition.                                                                                                                                                                                                                                                |
|   | "The number of positive integer $k(1 \le k \le \frac{n}{3})$ such that $\frac{n!}{(n-3k)! \cdot k! \cdot 3^{k+1}}$ is not a integer" is 216.                                                                                                                                                                                     |
| 2 | Let $ABC$ be a triangle and its incircle meets $BC$ , $AC$ , $AB$ at $D$ , $E$ and $F$ respectively. Let point $P$ on the incircle and inside $\triangle AEF$ . Let $X = PB \cap DF$ , $Y = PC \cap DE$ , $Q = EX \cap FY$ . Prove that the points $A$ and $Q$ lies on $DP$ simultaneously or located opposite sides from $DP$ . |
| 3 | There are $n$ students each having $r$ positive integers. Their $nr$ positive integers are all different.<br>Prove that we can divide the students into $k$ classes satisfying the following conditions.                                                                                                                         |
|   | (a) $k \leq 4r$                                                                                                                                                                                                                                                                                                                  |
|   |                                                                                                                                                                                                                                                                                                                                  |

## **AoPS Community**

## 2011 Korea National Olympiad

(b) If a student A has the number m, then the student B in the same class can't have a number l such that

$$(m-1)! < l < (m+1)! + 1$$

4 Let  $x_1, x_2, \cdots, x_{25}$  real numbers such that  $0 \le x_i \le i(i = 1, 2, \cdots, 25)$ . Find the maximum value of

 $x_1^3 + x_2^3 + \dots + x_{25}^3 - (x_1x_2x_3 + x_2x_3x_4 + \dots + x_{25}x_1x_2)$ 

