AoPS Community

Korea National Olympiad 2012

www.artofproblemsolving.com/community/c5344
by cadiTM, syk0526

Day 1

1 Let $A B C$ be an obtuse triangle with $\angle A>90^{\circ}$. Let circle O be the circumcircle of $A B C . D$ is a point lying on segment $A B$ such that $A D=A C$. Let $A K$ be the diameter of circle O. Two lines $A K$ and $C D$ meet at L. A circle passing through D, K, L meets with circle O at $P(\neq K)$. Given that $A K=2, \angle B C D=\angle B A P=10^{\circ}$, prove that $D P=\sin \left(\frac{\angle A}{2}\right)$.

2 There are n students $A_{1}, A_{2}, \cdots, A_{n}$ and some of them shaked hands with each other. (A_{i} and A_{j} can shake hands more than one time.) Let the student A_{i} shaked hands d_{i} times. Suppose $d_{1}+d_{2}+\cdots+d_{n}>0$. Prove that there exist $1 \leq i<j \leq n$ satisfying the following conditions:
(a) Two students A_{i} and A_{j} shaked hands each other.
(b) $\frac{\left(d_{1}+d_{2}+\cdots+d_{n}\right)^{2}}{n^{2}} \leq d_{i} d_{j}$

3 Find all triples (m, p, q) where m is a positive integer and p, q are primes.

$$
2^{m} p^{2}+1=q^{5}
$$

$4 a, b, c$ are positive numbers such that $a^{2}+b^{2}+c^{2}=2 a b c+1$. Find the maximum value of

$$
(a-2 b c)(b-2 c a)(c-2 a b)
$$

Day 2

$1 \quad p>3$ is a prime number such that $p \mid 2^{p-1}-1$ and $p \nmid 2^{x}-1$ for $x=1,2, \cdots, p-2$. Let $p=2 k+3$. Now we define sequence $\left\{a_{n}\right\}$ as

$$
a_{i}=a_{i+k}=2^{i}(1 \leq i \leq k), a_{j+2 k}=a_{j} a_{j+k}(j \geq 1)
$$

Prove that there exist $2 k$ consecutive terms of sequence $a_{x+1}, a_{x+2}, \cdots, a_{x+2 k}$ such that for all $1 \leq i<j \leq 2 k, a_{x+i} \not \equiv a_{x+j}(\bmod p)$.

2 Let w be the incircle of triangle $A B C$. Segments $B C, C A$ meet with w at points D, E. A line passing through B and parallel to $D E$ meets w at F and G. (F is nearer to B than G.) Line $C G$ meets w at $H(\neq G)$. A line passing through G and parallel to $E H$ meets with line $A C$ at I.

Line $I F$ meets with circle w at $J(\neq F)$. Lines $C J$ and $E G$ meets at K. Let l be the line passing through K and parallel to $J D$. Prove that $l, I F, E D$ meet at one point.

3 Let $\left\{a_{1}, a_{2}, \cdots, a_{10}\right\}=\{1,2, \cdots, 10\}$. Find the maximum value of

$$
\sum_{n=1}^{10}\left(n a_{n}^{2}-n^{2} a_{n}\right)
$$

4 Let $p \equiv 3(\bmod 4)$ be a prime. Define $T=\{(i, j) \mid i, j \in\{0,1, \cdots, p-1\}\} \backslash\{(0,0)\}$. For arbitrary subset $S(\neq \emptyset) \subset T$, prove that there exist subset $A \subset S$ satisfying following conditions:
(a) $\left(x_{i}, y_{i}\right) \in A(1 \leq i \leq 3)$ then $p \nmid x_{1}+x_{2}-y_{3}$ or $p \nmid y_{1}+y_{2}+x_{3}$.
(b) $8 n(A)>n(S)$

