Art of Problem Solving

AoPS Community

Korea National Olympiad 2013

www.artofproblemsolving.com/community/c5345
by syk0526

Day 1 November 10th

1 Let P be a point on segment $B C . Q, R$ are points on $A C, A B$ such that $P Q \| A B$ and $P R \| A C$. O, O_{1}, O_{2} are the circumcenters of triangle $A B C, B P R, P C Q$. The circumcircles of $B P R, P C Q$ meet at point $K(\neq P)$. Prove that $O O_{1}=K O_{2}$.

2 Let $a, b, c>0$ such that $a b+b c+c a=3$. Prove that

$$
\sum_{c y c} \frac{(a+b)^{3}}{\left(2(a+b)\left(a^{2}+b^{2}\right)\right)^{\frac{1}{3}}} \geq 12
$$

3 Prove that there exist monic polynomial $f(x)$ with degree of 6 and having integer coefficients such that
(1) For all integer $m, f(m) \neq 0$.
(2) For all positive odd integer n, there exist positive integer k such that $f(k)$ is divided by n.
$4 \quad\left\{a_{n}\right\}$ is a positive integer sequence such that $a_{i+2}=a_{i+1}+a_{i}(i \geq 1)$. For positive integer n, define $\left\{b_{n}\right\}$ as

$$
b_{n}=\frac{1}{a_{2 n+1}} \sum_{i=1}^{4 n-2} a_{i}
$$

Prove that b_{n} is positive integer, and find the general form of b_{n}.

Day 2 November 10th

$5 \quad$ Find all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ satisfying

$$
f(m n)=\operatorname{lcm}(m, n) \cdot \operatorname{gcd}(f(m), f(n))
$$

for all positive integer m, n.
6 Let O be circumcenter of triangle $A B C$. For a point P on segmet $B C$, the circle passing through P, B and tangent to line $A B$ and the circle passing through P, C and tangent to line $A C$ meet at point $Q(\neq P)$. Let D, E be foot of perpendicular from Q to $A B, A C .(D \neq B, E \neq C)$ Two lines $D E$ and $B C$ meet at point R. Prove that O, P, Q are collinear if and only if A, R, Q are collinear.

7 For positive integer k, define integer sequence $\left\{b_{n}\right\},\left\{c_{n}\right\}$ as follows:

$$
\begin{gathered}
b_{1}=c_{1}=1 \\
b_{2 n}=k b_{2 n-1}+(k-1) c_{2 n-1}, c_{2 n}=b_{2 n-1}+c_{2 n-1} \\
b_{2 n+1}=b_{2 n}+(k-1) c_{2 n}, c_{2 n+1}=b_{2 n}+k c_{2 n}
\end{gathered}
$$

Let $a_{k}=b_{2014}$. Find the value of

$$
\sum_{k=1}^{100}\left(a_{k}-\sqrt{a_{k}^{2}-1}\right)^{\frac{1}{2014}}
$$

8 For positive integer a, b, c, d there are $a+b+c+d$ points on plane which none of three are collinear. Prove there exist two lines l_{1}, l_{2} such that
(1) l_{1}, l_{2} are not parallel.
(2) l_{1}, l_{2} do not pass through any of $a+b+c+d$ points.
(3) There are a, b, c, d points on each region separated by two lines l_{1}, l_{2}.

