AoPS Community

Czech-Polish-Slovak Match 2017

www.artofproblemsolving.com/community/c534661
by Snakes, parmenides51

Day 1

1 Find all positive real numbers c such that there are in finitely many pairs of positive integers (n, m) satisfying the following conditions: $n \geq m+c \sqrt{m-1}+1$ and among numbers $n . n+$ $1, \ldots .2 n-m$ there is no square of an integer.
(Slovakia)
2 Let ω be the circumcircle of an acute-angled triangle $A B C$. Point D lies on the arc $B C$ of ω not containing point A. Point E lies in the interior of the triangle $A B C$, does not lie on the line $A D$, and satis fies $\angle D B E=\angle A C B$ and $\angle D C E=\angle A B C$. Let F be a point on the line $A D$ such that lines $E F$ and $B C$ are parallel, and let G be a point on ω different from A such that $A F=F G$. Prove that points D, E, F, G lie on one circle.

(Slovakia)

3 Let k be a fi xed positive integer. A finite sequence of integers $x_{1}, x_{2}, \ldots, x_{n}$ is written on a blackboard. Pepa and Geoff are playing a game that proceeds in rounds as follows.

- In each round, Pepa first partitions the sequence that is currently on the blackboard into two or more contiguous subsequences (that is, consisting of numbers appearing consecutively). However, if the number of these subsequences is larger than 2 , then the sum of numbers in each of them has to be divisible by k.
- Then Geoff selects one of the subsequences that Pepa has formed and wipes all the other subsequences from the blackboard.
The game fi nishes once there is only one number left on the board. Prove that Pepa may choose his moves so that independently of the moves of Geoff, the game fi nishes after at most $3 k$ rounds.
(Poland)

Day 2

1 Let $A B C$ be a triangle. Line / is parallel to $B C$ and it respectively intersects side $A B$ at point D, side $A C$ at point E, and the circumcircle of the triangle $A B C$ at points F and G, where points F, D, E, G lie in this order on I. The circumcircles of triangles $F E B$ and $D G C$ intersect at points P and Q. Prove that points A, P, Q are collinear.
(Slovakia)

2 Each of the $4 n^{2}$ unit squares of a $2 n \times 2 n$ board ($n \geq 1$) has been colored blue or red. A set of four different unit squares of the board is called pretty if these squares can be labeled A, B, C, D in such a way that A and B lie in the same row, C and D lie in the same row, A and C lie in the same column, B and D lie in the same column, A and D are blue, and B and C are red. Determine the largest possible number of different pretty sets on such a board.
(Poland)
3 Find all functions $f:(0,+\infty) \rightarrow R$ satisfying $f(x)-f(x+y)=f\left(\frac{x}{y}\right) f(x+y)$ for all $x, y>0$. (Austria)

