AoPS Community

Czech-Polish-Slovak Match 2013

www.artofproblemsolving.com/community/c534772
by Snakes, Sayan, parmenides51

Day 1

1 Suppose $A B C D$ is a cyclic quadrilateral with $B C=C D$. Let ω be the circle with center C tangential to the side $B D$. Let I be the centre of the incircle of triangle $A B D$. Prove that the straight line passing through I, which is parallel to $A B$, touches the circle ω.

2 Prove that for every real number $x>0$ and each integer $n>0$ we have

$$
x^{n}+\frac{1}{x^{n}}-2 \geq n^{2}\left(x+\frac{1}{x}-2\right)
$$

$3 \quad$ For each rational number r consider the statement: If x is a real number such that $x^{2}-r x$ and $x^{3}-r x$ are both rational, then x is also rational.
(a) Prove the claim for $r \geq \frac{4}{3}$ and $r \leq 0$.
(b) Let p, q be different odd primes such that $3 p<4 q$. Prove that the claim for $r=\frac{p}{q}$ does not hold.

Day 2

1 Let a and b be integers, where b is not a perfect square. Prove that $x^{2}+a x+b$ may be the square of an integer only for finite number of integer values of x.
(Martin Panák)
2 Triangular grid divides an equilateral triangle with sides of length n into n^{2} triangular cells as shown in figure for $n=12$. Some cells are infected. A cell that is not yet infected, ia infected when it shares adjacent sides with at least two already infected cells. Specify for $n=12$, the least number of infected cells at the start in which it is possible that over time they will infected all the cells of the original triangle.

3 Let $A B C$ be a triangle inscribed in a circle. Point P is the center of the arc $B A C$. The circle with the diameter $C P$ intersects the angle bisector of angle $\angle B A C$ at points $K, L(|A K|<|A L|)$. Point M is the reflection of L with respect to line $B C$. Prove that the circumcircle of the triangle $B K M$ passes through the center of the segment $B C$.

