

AoPS Community

2002 France Team Selection Test

France Team Selection Test 2002

www.artofproblemsolving.com/community/c5348

by WakeUp, nguyenvuthanhha, cancer

Day 1	
1	In an acute-angled triangle ABC , A_1 and B_1 are the feet of the altitudes from A and B respectively, and M is the midpoint of AB . a) Prove that MA_1 is tangent to the circumcircle of triangle A_1B_1C . b) Prove that the circumcircles of triangles A_1B_1C , BMA_1 , and AMB_1 have a common point.
2	Consider the set <i>S</i> of integers <i>k</i> which are products of four distinct primes. Such an integer $k = p_1 p_2 p_3 p_4$ has 16 positive divisors $1 = d_1 < d_2 < \ldots < d_{15} < d_{16} = k$. Find all elements of <i>S</i> less than 2002 such that $d_9 - d_8 = 22$.
3	Let <i>n</i> be a positive integer and let $(a_1, a_2, \ldots, a_{2n})$ be a permutation of $1, 2, \ldots, 2n$ such that the numbers $ a_{i+1} - a_i $ are pairwise distinct for $i = 1, \ldots, 2n - 1$. Prove that $\{a_2, a_4, \ldots, a_{2n}\} = \{1, 2, \ldots, n\}$ if and only if $a_1 - a_{2n} = n$.
Day 2	
1	There are three colleges in a town. Each college has n students. Any student of any college knows $n + 1$ students of the other two colleges. Prove that it is possible to choose a student from each of the three colleges so that all three students would know each other.
2	Let ABC be a non-equilateral triangle. Denote by I the incenter and by O the circumcenter of the triangle ABC . Prove that $\angle AIO \leq \frac{\pi}{2}$ holds if and only if $2 \cdot BC \leq AB + AC$.
3	Let $p \ge 3$ be a prime number. Show that there exist p positive integers a_1, a_2, \ldots, a_p not exceeding $2p^2$ such that the $\frac{p(p-1)}{2}$ sums $a_i + a_j$ $(i < j)$ are all distinct.

Act of Problem Solving is an ACS WASC Accredited School.