AoPS Community

France Team Selection Test 2002

www.artofproblemsolving.com/community/c5348
by WakeUp, nguyenvuthanhha, cancer

Day 1

1 In an acute-angled triangle $A B C, A_{1}$ and B_{1} are the feet of the altitudes from A and B respectively, and M is the midpoint of $A B$.
a) Prove that $M A_{1}$ is tangent to the circumcircle of triangle $A_{1} B_{1} C$.
b) Prove that the circumcircles of triangles $A_{1} B_{1} C, B M A_{1}$, and $A M B_{1}$ have a common point.

2 Consider the set S of integers k which are products of four distinct primes. Such an integer $k=p_{1} p_{2} p_{3} p_{4}$ has 16 positive divisors $1=d_{1}<d_{2}<\ldots<d_{15}<d_{16}=k$. Find all elements of S less than 2002 such that $d_{9}-d_{8}=22$.

3 Let n be a positive integer and let $\left(a_{1}, a_{2}, \ldots, a_{2 n}\right)$ be a permutation of $1,2, \ldots, 2 n$ such that the numbers $\left|a_{i+1}-a_{i}\right|$ are pairwise distinct for $i=1, \ldots, 2 n-1$.
Prove that $\left\{a_{2}, a_{4}, \ldots, a_{2 n}\right\}=\{1,2, \ldots, n\}$ if and only if $a_{1}-a_{2 n}=n$.

Day 2

1 There are three colleges in a town. Each college has n students. Any student of any college knows $n+1$ students of the other two colleges. Prove that it is possible to choose a student from each of the three colleges so that all three students would know each other.

2 Let $A B C$ be a non-equilateral triangle. Denote by I the incenter and by O the circumcenter of the triangle $A B C$. Prove that $\angle A I O \leq \frac{\pi}{2}$ holds if and only if $2 \cdot B C \leq A B+A C$.

3 Let $p \geq 3$ be a prime number. Show that there exist p positive integers $a_{1}, a_{2}, \ldots, a_{p}$ not exceeding $2 p^{2}$ such that the $\frac{p(p-1)}{2}$ sums $a_{i}+a_{j}(i<j)$ are all distinct.

