Art of Problem Solving

AoPS Community

France Team Selection Test 2003

www.artofproblemsolving.com/community/c5349
by ACCCGS8, orl, grobber

Day 1

1 A lattice point in the coordinate plane with origin O is called invisible if the segment $O A$ contains a lattice point other than O, A. Let L be a positive integer. Show that there exists a square with side length L and sides parallel to the coordinate axes, such that all points in the square are invisible.

2 A lattice point in the coordinate plane with origin O is called invisible if the segment $O A$ contains a lattice point other than O, A. Let L be a positive integer. Show that there exists a square with side length L and sides parallel to the coordinate axes, such that all points in the square are invisible.
$3 \quad M$ is an arbitrary point inside $\triangle A B C . A M$ intersects the circumcircle of the triangle again at A_{1}. Find the points M that minimise $\frac{M B \cdot M C}{M A_{1}}$.

Day 2

1 Let B be a point on a circle S_{1}, and let A be a point distinct from B on the tangent at B to S_{1}. Let C be a point not on S_{1} such that the line segment $A C$ meets S_{1} at two distinct points. Let S_{2} be the circle touching $A C$ at C and touching S_{1} at a point D on the opposite side of $A C$ from B. Prove that the circumcentre of triangle $B C D$ lies on the circumcircle of triangle $A B C$.

210 cities are connected by one-way air routes in a way so that each city can be reached from any other by several connected flights. Let n be the smallest number of flights needed for a tourist to visit every city and return to the starting city. Clearly n depends on the flight schedule. Find the largest n and the corresponding flight schedule.

3 Let $p_{1}, p_{2}, \ldots, p_{n}$ be distinct primes greater than 3 . Show that $2^{p_{1} p_{2} \cdots p_{n}}+1$ has at least 4^{n} divisors.

