AoPS Community

France Team Selection Test 2004

www.artofproblemsolving.com/community/c5350
by pbornsztein, Valentin Vornicu

Day 1

1 If n is a positive integer, let $A=\{n, n+1, \ldots, n+17\}$.
Does there exist some values of n for which we can divide A into two disjoints subsets B and C such that the product of the elements of B is equal to the product of the elements of C ?

2 Let $A B C D$ be a parallelogram. Let M be a point on the side $A B$ and N be a point on the side $B C$ such that the segments $A M$ and $C N$ have equal lengths and are non-zero. The lines $A N$ and $C M$ meet at Q.
Prove that the line $D Q$ is the bisector of the angle $\measuredangle A D C$.
Alternative formulation. Let $A B C D$ be a parallelogram. Let M and N be points on the sides $A B$ and $B C$, respectively, such that $A M=C N \neq 0$. The lines $A N$ and $C M$ intersect at a point Q.
Prove that the point Q lies on the bisector of the angle $\measuredangle A D C$.
3 Each point of the plane with two integer coordinates is the center of a disk with radius $\frac{1}{1000}$. Prove that there exists an equilateral triangle whose vertices belong to distinct disks.
Prove that such a triangle has side-length greater than 96.

Day 2

1 Let n be a positive integer, and $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$ be $2 n$ positive real numbers such that $a_{1}+$ $\ldots+a_{n}=b_{1}+\ldots+b_{n}=1$.

Find the minimal value of $\frac{a_{1}^{2}}{a_{1}+b_{1}}+\frac{a_{2}^{2}}{a_{2}+b_{2}}+\ldots+\frac{a_{n}^{2}}{a_{n}+b_{n}}$.
2 Let P, Q, and R be the points where the incircle of a triangle $A B C$ touches the sides $A B, B C$, and $C A$, respectively.
Prove the inequality $\frac{B C}{P Q}+\frac{C A}{Q R}+\frac{A B}{R P} \geq 6$.
$3 \quad$ Let P be the set of prime numbers. Consider a subset M of P with at least three elements. We assume that, for each non empty and finite subset A of M, with $A \neq M$, the prime divisors of the integer $\left(\prod_{p \in A}\right)-1$ belong to M.
Prove that $M=P$.

