

AoPS Community

2004 France Team Selection Test

France Team Selection Test 2004

www.artofproblemsolving.com/community/c5350 by pbornsztein, Valentin Vornicu

Day 1

1	If <i>n</i> is a positive integer, let $A = \{n, n + 1,, n + 17\}$. Does there exist some values of <i>n</i> for which we can divide <i>A</i> into two disjoints subsets <i>B</i> and <i>C</i> such that the product of the elements of <i>B</i> is equal to the product of the elements of <i>C</i> ?
2	Let $ABCD$ be a parallelogram. Let M be a point on the side AB and N be a point on the side BC such that the segments AM and CN have equal lengths and are non-zero. The lines AN and CM meet at Q . Prove that the line DQ is the bisector of the angle $\measuredangle ADC$.
	Alternative formulation. Let $ABCD$ be a parallelogram. Let M and N be points on the sides AB and BC , respectively, such that $AM = CN \neq 0$. The lines AN and CM intersect at a point Q . Prove that the point Q lies on the bisector of the angle $\measuredangle ADC$.
3	Each point of the plane with two integer coordinates is the center of a disk with radius $\frac{1}{1000}$. Prove that there exists an equilateral triangle whose vertices belong to distinct disks. Prove that such a triangle has side-length greater than 96.
Day 2	
1	Let <i>n</i> be a positive integer, and $a_1,, a_n, b_1,, b_n$ be $2n$ positive real numbers such that $a_1 + + a_n = b_1 + + b_n = 1$.
	Find the minimal value of $\frac{a_1^2}{a_1+b_1} + \frac{a_2^2}{a_2+b_2} + + \frac{a_n^2}{a_n+b_n}$.
2	Let <i>P</i> , <i>Q</i> , and <i>R</i> be the points where the incircle of a triangle <i>ABC</i> touches the sides <i>AB</i> , <i>BC</i> , and <i>CA</i> , respectively. Prove the inequality $\frac{BC}{PQ} + \frac{CA}{QR} + \frac{AB}{RP} \ge 6$.
3	Let <i>P</i> be the set of prime numbers. Consider a subset <i>M</i> of <i>P</i> with at least three elements. We assume that, for each non empty and finite subset <i>A</i> of <i>M</i> , with $A \neq M$, the prime divisors of the integer $(\prod_{p \in A}) - 1$ belong to <i>M</i> . Prove that $M = P$.

🐼 AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱