

AoPS Community

2005 France Team Selection Test

France Team Selection Test 2005

www.artofproblemsolving.com/community/c5351

by Igor, El Chamo, darij grinberg, remo, cyberjoe, Valentin Vornicu

Day 1 May 26th

1	Let x, y be two positive integers such that $3x^2 + x = 4y^2 + y$. Prove that $x - y$ is a perfect square.
2	Two right angled triangles are given, such that the incircle of the first one is equal to the circum- circle of the second one. Let S (respectively S') be the area of the first triangle (respectively of the second triangle).
	Prove that $\frac{S}{S'} \ge 3 + 2\sqrt{2}$.
3	In an international meeting of $n \ge 3$ participants, 14 languages are spoken. We know that:
	- Any 3 participants speak a common language.
	- No language is spoken more that by the half of the participants.
	What is the least value of <i>n</i> ?
Day 2	May 27th
4	Let X be a non empty subset of $\mathbb{N} = \{1, 2, \ldots\}$. Suppose that for all $x \in X$, $4x \in X$ and $\lfloor \sqrt{x} \rfloor \in X$. Prove that $X = \mathbb{N}$.
5	Let <i>ABC</i> be a triangle such that $BC = AC + \frac{1}{2}AB$. Let <i>P</i> be a point of <i>AB</i> such that $AP = 3PB$.
	Show that $\widehat{PAC} = 2\widehat{CPA}$.
6	Let <i>P</i> be a polynom of degree $n \ge 5$ with integer coefficients given by $P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$ with $a_i \in \mathbb{Z}$, $a_n \ne 0$.
	Suppose that <i>P</i> has <i>n</i> different integer roots (elements of \mathbb{Z}) : 0, $\alpha_2, \ldots, \alpha_n$. Find all integers $k \in \mathbb{Z}$ such that $P(P(k)) = 0$.

AoPS Online 🔯 AoPS Academy 🔯 AoPS 🕬