AoPS Community

France Team Selection Test 2005

www.artofproblemsolving.com/community/c5351
by Igor, El Chamo, darij grinberg, remo, cyberjoe, Valentin Vornicu

Day 1 May 26th
1 Let x, y be two positive integers such that $3 x^{2}+x=4 y^{2}+y$.
Prove that $x-y$ is a perfect square.
2 Two right angled triangles are given, such that the incircle of the first one is equal to the circumcircle of the second one. Let S (respectively S^{\prime}) be the area of the first triangle (respectively of the second triangle).

Prove that $\frac{S}{S^{\prime}} \geq 3+2 \sqrt{2}$.
3 In an international meeting of $n \geq 3$ participants, 14 languages are spoken. We know that:

- Any 3 participants speak a common language.
- No language is spoken more that by the half of the participants.

What is the least value of n ?
Day 2 May 27th
$4 \quad$ Let X be a non empty subset of $\mathbb{N}=\{1,2, \ldots\}$. Suppose that for all $x \in X, 4 x \in X$ and $\lfloor\sqrt{x}\rfloor \in X$. Prove that $X=\mathbb{N}$.

5 Let $A B C$ be a triangle such that $B C=A C+\frac{1}{2} A B$. Let P be a point of $A B$ such that $A P=3 P B$. Show that $\widehat{P A C}=2 \widehat{C P A}$.

6 Let P be a polynom of degree $n \geq 5$ with integer coefficients given by $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+$ $\cdots+a_{0} \quad$ with $a_{i} \in \mathbb{Z}, a_{n} \neq 0$.

Suppose that P has n different integer roots (elements of \mathbb{Z}): $0, \alpha_{2}, \ldots, \alpha_{n}$. Find all integers $k \in \mathbb{Z}$ such that $P(P(k))=0$.

